DEPARTMENT OF CIVIL ENGINEERING

AALBORG UNIVERSITY

SOHNGAARDSHOLMSVEJ 57 DK-9000 AALBORG DENMARK TELEPHONE +45 96 35 80 80 TELEFAX +45 98 14 25 55

DELOS WP 1.1 Inventory on LCS, detailed description

According to DELOS WP 1.1 an inventory for existing low crested structures (LCS) must be established. As low crested structure we mean structures designed to be submerged or regularly overtopped by waves. The detailed inventory (described below) concerns shore parallel structures including shore-attached structures, which are perpendicular to shoreline if part of the scheme. This inventory will be established through a digital questionnaire located at www.delos.dk

The inventory is established in the following way:

- A brief description is given for each LCS (another document). This description should be given for all kinds of LCS.
- Some structures/locations are selected for further investigations
- A more detailed description is given for the selected structures/locations (this document). This part shall focus on shore parallel structures including shore-attached structures, which are perpendicular to shoreline if part of the scheme.

Both the brief and the detailed descriptions will be presented on <u>www.delos.dk</u> For each structure the following information should be given.

A: Formalities	3
B: Geometry and construction materials	
C: Local meteomarine conditions at the structure	
D: Sea bed and beach characteristics, incl. sediment transport	
E: Structural performance	
F: Socio-economic aspects	
G: Ecological aspects	
H: Coastal protection performance	
I: Problems in general	

DEPARTMENT OF CIVIL ENGINEERING

AALBORG UNIVERSITY

SOHNGAARDSHOLMSVEJ 57 DK-9000 AALBORG DENMARK TELEPHONE +45 96 35 80 80 TELEFAX +45 98 14 25 55

How to use this document

In this document, you can give a detailed description of a specific LCS. The description must be completed within this digital document. Just type the text in the tables, insert relevant pictures, drawings, sketches etc. and save the document. Only relevant information should be included in the document; existing non-used tables, sketches etc. present in this document must be deleted. The existing figures etc. are meant to be guidelines that can be changed for a specific environment. But please keep the structure of the document intact.

When completed, please attach the document to an email and send it to i5mkr@civil.auc.dk.

The filenames for the documents must include the participant code, the Country Code (as used on the Internet for Country Code Domains) and a Location-number between 001 and 999. It is very important that the same Location-number is used as for the brief description. The letters "det" must also be included to indicate that the detailed version of the questionnaire is used. The filenames for UB collecting information from East Italy (see special Country Code below) will therefore be "UB_EIT_det_001.doc" till "UB_EIT_det_999.doc". Each participant must provide a map of the country showing all the locations of the sites of interest, the Location-numbers must appear on this map.

Inputs come from:

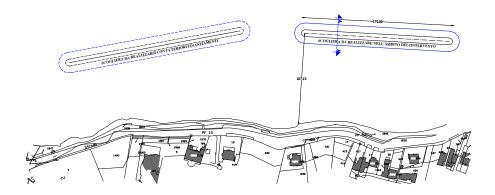
UPC: Spain (Country Code ES)
DHI: Denmark (Country Code DK)

MOD & UR3: West Italy (Country Code WIT)

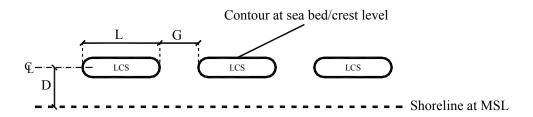
UB: East Italy (Country Code EIT) AUTH: Greece (Country Code GR) INF: Holland (Country Code NL)

UCA: non European LCS by literature study (Country Code nonEU)

UoS: U.K. (Country Code UK)


A: Formalities

Participant code and who to contact.	EIT ******
E-mail	ferdy@platonet.it emanuela.clementi@mail.ing.unibo.it
This date (today, mm:dd:yyyy) and revision number (AZ).	01/23/2003
Location of LCS.	Bisceglie (6_2). This area is named Salsello, is located in Puglia, south of Italy, along the Adriatic sea; in particular, it is located between the town Bari and Barletta, some hundreds meters South of Paternostro and Carrara delle Monache.
Start date, length and/or end of works. Have there been any later changes? If so, when?	Start date: 2000 Not yet completely finished
Design life - the minimum length of time the beach management scheme is designed to last.	
Which tools and regulations are used for the design formulae (mathematical models, model tests, engineering experience, standards, recommendations).	Engineering experience
Who fund the work (e.g. Public Administration or private company)?	Public Administration
Costs.	


B: Geometry and construction materials

B1 System layout (aerial view)

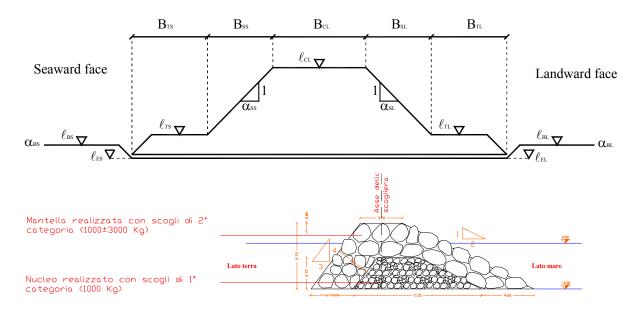
Are shore attaching structures present (e.g. groins)?	□Yes ⊠No
Are emerging head islands present?	□Yes ⊠No

Design plan view of "Salsello".

The typical layout is given at Sea Bed (index SB) and at Crest Level (index CL).

Parameter	Description	Fill in box	unit
D	Distance from shoreline	76-107	Meters
L_{SB}	Length of LCS at sea bed	170	Meters
L_{CL}	Length of LCS at crest level	200	Meters
G_{SB}	Gap between LCS at sea bed		Meters
G_{CL}	Gap between LCS at crest level	72	Meters
n	Number of LCS in system	2	

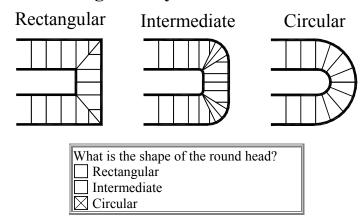
Remarks

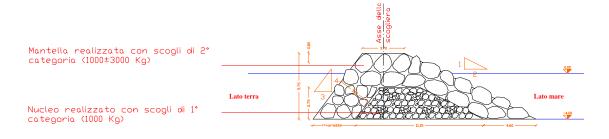

In 2000 a new intervention was started in the area named "Salsello", hundreds meters South of Carrara delle Monache. The sea works consisted of two emerging detached breakwaters and a seawall.

B2 Bathymetry of sea bed and beach

Description of bathymetry when LCS were build

A detailed bathymetry prior the construction is available only on a paper format. It is attached to a deeper report from Univ. of Bologna and is available on request.


B3 Trunk cross section/contour geometry – outer profile


Parameter	Description	Fill in box	Unit
$\alpha_{ m BS}$	Steepness of sea bed, seaward	0.18 %	
$lpha_{ m BL}$	Steepness of sea bed, landward	10.5 %	
$lpha_{ ext{SS}}$	Steepness of slope, seaward	3/4	
$lpha_{ m SL}$	Steepness of slope, landward	1/2	
$\ell_{ m BS}$	Level of sea bed at seaward toe		Meters
ℓ_{ES}	Level of excavation, seaward	0	Meters
$\ell_{ ext{TS}}$	Level of toe, seaward		Meters
$\ell_{ ext{CL}}$	Level of crest	+0.80	Meters
ℓ_{BS}	Level of sea bed at landward toe		Meters
ℓ_{ES}	Level of excavation, landward	0	Meters
ℓ_{TS}	Level of toe, landward		Meters
B_{TS}	Width of toe, seaward	0	Meters
B _{SS}	Width of slope, seaward	Variable	Meters
$\rm B_{CL}$	Width of crest	3.70	Meters
B_{SL}	Width of slope, landward	Variable	Meters

ho	Width of toe, landward	0	Meters
Remarks (e.g.	different layout along shoreline, other in	nportant parameters).	

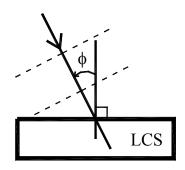
B4 Round head contour geometry

B5 Description of layersdesign typical cross section

ARMOUR LAYER CHARACTERISTICS					
Parameter	Description	Fill in box	unit		
	Material (e.g. quartzite, concrete)	Calcareous rock			
	Shape of blocks (e.g. quarry rock, sea stones, cubes)	Quarry rock			
$\rho_{\rm r}$	Mass density of material	2650	kg/m ³		
D _{n50}	Nominal diameter	II CAT (W=1000-3000 Kg)	meters		
Gr	Grading of the material (D ₈₅ /D ₁₅)	Not known			
	Geotextile between layers?	☐Yes ⊠ No			

Remarks (e.g. details on geotextile)

CORE LAYER CHARACTERISTICS


Parameter	Description	Fill in box	unit
	Material (e.g. quartzite, concrete)	Calcareous rock	
	Shape of blocks (e.g. quarry rock, sea stones, cubes)	Quarry rock	
$\rho_{\rm r}$	Mass density of material	2650	kg/m ³
D _{n50}	Nominal diameter	I CAT (W=1000 Kg)	meters
Gr	Grading of the material (D ₈₅ /D ₁₅)	Not known	
	Geotextile between layers?	☐Yes ⊠ No	

B6 Construction method

How have the stones been placed? Dumped with barges Placed with barges Land based operation Other:	
Sequence of operation. Construction started upstream Construction started downstream	

C: Local meteomarine conditions at the structure

C1 Waves

Parameter	Description	Fill in box	unit
H_{S}	Design significant wave height	2.8	Meters
T _P	Design peak period	7.5	Seconds
ф	Design wave incidence angle	60	Degree

Direction	Return period (years)				Return period (years)	Return period (years)		
(° N)	1	5	10	25	50	100		
000	3,59	4,74	5,25	5,95	6,48	7,02		
030	2,82	3,66	4,03	4,51	4,88	5,24		
060	2,91	3,44	3,65	3,91	4,09	4,27		
090	2,37	2,86	3,05	3,28	3,45	3,60		
120	3,15	4,18	4,63	5,25	5,73	6,21		
150	3,72	4,50	4,82	5,25	5,56	5,88		
270	2,65	3,49	3,85	4,33	4,69	5,05		
300	3,25	4,48	5,06	5,84	6,47	7,11		
330	3,51	4,59	5,08	5,76	6,29	6,84		

Significant wave heights in meters for each direction class with various return periods for Bisceglie (source KNMI data).

C2 Water levels

TIDAL WATER LEVEL VARIATIONS				
Parameter	Description	Fill in box	unit	
HAT	Highest astronomical tide level	0.80	Meters	
MHWL	Mean tide high water level	0.25	Meters	
MWL	Mean water level	0.0	Meters	
MLWL	Mean tide low water level	- 0.25	Meters	
LAT	Lowest astronomical tide level	- 0.60	Meters	

Water level statistics(If available, please provide information on design water level and tide and surge generated water levels corresponding to return periods 1 month, 1 y, 10 y, 50 y)

C3 Current

Tidal currents

Description & statistics NOT available

Surge generated currents

Description & statistics NOT available

D: Sea bed and beach characteristics, incl. sediment transport

Description of the coast:

The coastline is characterized by a vertical cliff that is highly deteriorated due to its composition and to the action of the sea waves.

D1 Natural sea bed material at surface

Parameter	Description of sea bed material	Fill in box Unit	
	Material (e.g. quartzite) Calcareous rock		
ρ_{r}	Mass density of material	DK	kg/m ³
D_{n50}	Nominal diameter grain size	DK	meters
Gr	Grading of the material (D ₈₅ /D ₁₅)	DK	

Remarks	
Rock bottom with some sandy areas, so it could be defined quite unerodible.	

D2 Natural beach material at surface

Parameter	Description of beach material Fill in box		unit
	Material (e.g. quartzite)		
$\rho_{\rm r}$	Mass density of material		kg/m ³
D_{n50}	Nominal diameter grain size		meters
Gr	Grading of the material (D ₈₅ /D ₁₅)		

Natural supply?	Yes No		
Supplied by beach nourishment?	Yes No		

Remarks		
IXCIII ai KS		

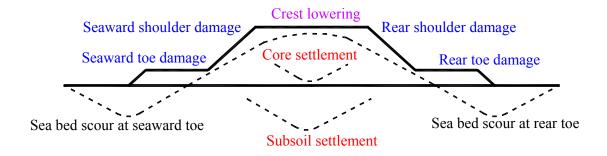
D3 Artificial beach nourishment

Description of nourishment	
NOT DONE	

Parameter	Description of artificial nourishment Fill in box		unit
	Material (e.g. quartzite)		
$\rho_{\rm r}$	Mass density of material		kg/m ³
D_{n50}	Nominal diameter		meters
Gr	Grading of the material (D ₈₅ /D ₁₅)		

Remarks (provide grain distribution if available)	1

D4 Sediment transport


Description of the sediment transport (e.g. direction and amount of transport, distribution over the coastal profile)

The longshore sediment transport at Bisceglie is assumed as negligible. Any way, information to studies at near sites indicate that the net sediment transport is directed from NW to SE.

Parameter	Description of sediment	Fill in box	unit
	Material (e.g. quartzite)		
$ ho_{ m r}$	Mass density of material		kg/m ³
D_{n50}	Nominal diameter		meters
Gr	Grading of the material (D ₈₅ /D ₁₅)		

E: Structural performance

E1 Definition of failure modes

Please insert a sketch with dimensions of LCS cross-section when it was build compared to the appearance now (like the figure of failure modes) if possible.

In the following please specify damages by failure mode (see figure of failure mode definition) and amount of damage. If you know the reason for the problems/failures (e.g. extreme wave climate/water level), please type it in the description boxes.

E2 Materials

Problems caused by deterioration?	☐ Yes ⊠ No		
Problems caused by breakage?	☐ Yes ⊠ No		

Description of the condition of the materials

E3 Settlement of the structure

Description of settlements of core/subsoil

T3 4 T	1	•	e	1 1	,
н.4 г	ncal	erosion	ot sea	hea	(scallr

Description of erosion/scour by roundheads (please specify scour depth)

Description of erosion/scour by trunk (please specify scour depth)

E5 Erosion and instability of slopes, shoulders, crest and toes

Stage of damage
☐No or marginal damage
☐ Moderate to severe damage
Failure

Description of displacements of structural material (provide sketch if possible)

E6 Damage parameters

The definition of a displaced unit is, when a unit is displaced by more than D_{n50} . Try to give an estimate of the following damage parameters relevant to armour.

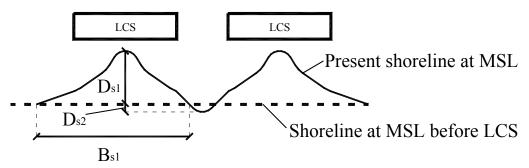
Parameter	Parameter Description		unit
The relative number of displaced units	$D(\%) = \frac{n_d (number of displaced units)}{Total number of units} \cdot 100$		%
The strip displacement	$N_{\text{od}} = \frac{n_d}{L/D_{n50}}$, L is the length of LCS		

F: Socio-economic aspects

1 · Socio economic aspects
What regime of property has the coast at this site? Private ☐, Public full free access ☒, Public limited access ☐, Natural reserve ☐, Don't know ☐ Other (please specify):
Who decided that an LCS should be built at that site? Individual, acting for private purpose Individual, acting for public purpose (e.g. Natural park administrator) Local authority (e.g. city council) Regional authority (e.g. province level) National authority (e.g. ministry) Don't know Please give name of the authority whenever applicable:
What was the main motive for building the LCS? Coast erosion ☐ Inducing or maintaining recreational activity ☒, please specify: Environmental concern ☐, please specify:

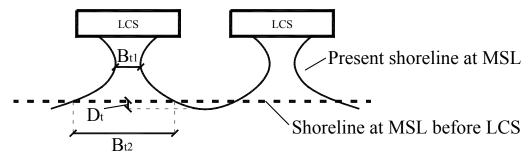
Other , please specify: Don't know				
Was that LCS part of a larger coastal management plan? Yes ☑, please specify: No ☐, please specify: Don't know ☐				
Public opinion on that LCS: Construction was accompanied by public protest The public did not react Public opinion asked for the LCS Local commerce asked for the LCS Don't know Other (please specify):				
Description of the coast: Urban , Densely constructed , Scarcely constructed , No apparent construction Are there dunes? Yes , No Has commercial activity changed significantly after construction of the LCS? hotels construction: More hotels , Less hotels , Unaffected , Don't know bars and similar construction: More , Less , Unaffected , Don't know advertising for the area: More , Less , Unaffected , Don't know other (specify):				
Visual impact of LCS not already described in Part B: Are there parts of the LCS visible under average conditions? Poles ☐, Cables ☐, Reefs ☒, Others (please specify):				
Water quality changes since LCS construction Are there episodes of water turbidity since construction? No ☒, Rare ☒, Often ☒, Permanent ☒ Were there episodes of water turbidity before construction? No ☒, Rare ☒, Often ☒, Permanent ☒ Has water quality otherwise been affected (for example, more or less detritus accumulating)? Please describe:				
How would you qualify the following recreational activities at or around the LCS? (DK = Don't know) Fishing (recreational)				
Could you describe those recreational activities before the LCS was built? (DK = Don't know) Fishing (recreational) Intense				

	Sailing and similar Other (specify)	=	Moderate Moderate	Scarce Scarce	Absent Absent Absent	DK DK	
Has th	at LCS had an environm Could you give its refe				lt? Yes ⊠, No	□, Don't l	know _
	ere been an economic st before it was built? Ye after it was built? Yes Ecological as	es □, No ⊠, □, No ⊠, D	Don't know [:		
	What are the dominant species on the structures?						
	What are the dominant species in the sediment and fish assemblages around the structures?						
	Were any environmenthe structure (e.g. incr						


H: Coastal protection performance

H1 Bathymetry and beach evolution

Description of historical beach evolution before LCS was built (10-20 years).


Description of beach evolution after LCS was built up to now.

H2 Salient formation

Parameter	Description	Fill in box	unit
D_{s1}	Max distance between new and old shoreline, seaward	0	Meters
D_{s2}	Max distance between new and old shoreline, landward	0	Meters
B_{s1}	Width of salient at old MSL	0	Meters

H3 Tombolo formation

Parameter	Description	Fill in box	unit
D_{t}	Distance between new and old shoreline, landward	0	Meters
B _{t1}	Minimal width of tombolo	0	Meters
B_{t2}	Width of tombolo at old MSL	0	Meters

H4 Renourishment

Description of renourishment (add more fill) (e.g. amount, how often)

No renourishment

H5 Down drift erosion

Please insert a sketch if relevant.

Description of down drift erosion (morphological impact, e.g. down drift erosion length and maximal down drift shoreline retreat)

I: Problems in general

Description of other problems/impacts