

DELOS WP 1.1 Inventory on LCS, detailed description

According to DELOS WP 1.1 an inventory for existing low crested structures (LCS) must be established. As low crested structure we mean structures designed to be submerged or regularly overtopped by waves. The detailed inventory (described below) concerns shore parallel structures including shore-attached structures, which are perpendicular to shoreline if part of the scheme. This inventory will be established through a digital questionnaire located at <u>www.delos.dk</u>

The inventory is established in the following way:

- A brief description is given for each LCS (another document). This description should be given for all kinds of LCS.
- Some structures/locations are selected for further investigations
- A more detailed description is given for the selected structures/locations (this document). This part shall focus on shore parallel structures including shore-attached structures, which are perpendicular to shoreline if part of the scheme.

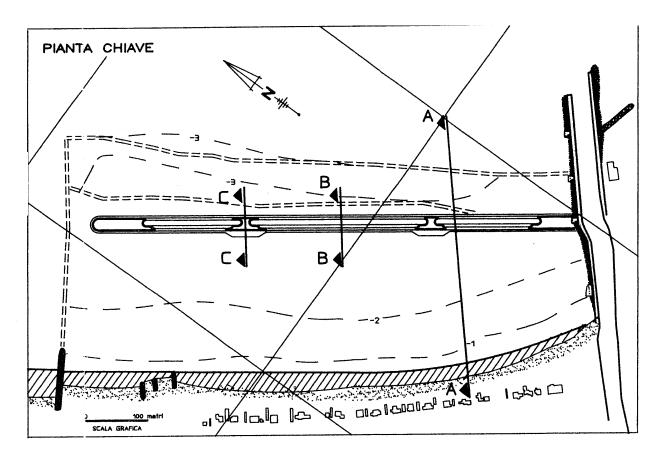
Both the brief and the detailed descriptions will be presented on www.delos.dk

For each structure the following information should be given.

A: Formalities	3
B: Geometry and construction materials	4
C: Local meteomarine conditions at the structure	10
D: Sea bed and beach characteristics, incl. sediment transport	12
E: Structural performance	14
F: Socio-economic aspects	16
G: Ecological aspects	
H: Coastal protection performance	
I: Problems in general	

How to use this document

In this document, you can give a detailed description of a specific LCS. The description must be completed within this digital document. Just type the text in the tables, insert relevant pictures, drawings, sketches etc. and save the document. Only relevant information should be included in the document; existing non-used tables, sketches etc. present in this document must be deleted. The existing figures etc. are meant to be guidelines that can be changed for a specific environment. But please keep the structure of the document intact.

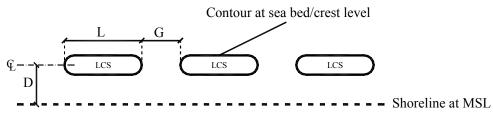

When completed, please attach the document to an email and send it to i5mkr@civil.auc.dk.

The filenames for the documents must include the participant code, the Country Code (as used on the Internet for Country Code Domains) and a Location-number between 001 and 999. It is very important that the same Location-number is used as for the brief description. The letters "det" must also be included to indicate that the detailed version of the questionnaire is used. The filenames for UB collecting information from East Italy (see special Country Code below) will therefore be "UB_EIT_det_001.doc" till "UB_EIT_det_999.doc". Each participant must provide a map of the country showing all the locations of the sites of interest, the Location-numbers must appear on this map.

Inputs come from: UPC: Spain (Country Code ES) DHI: Denmark (Country Code DK) MOD & UR3: West Italy (Country Code WIT) UB: East Italy (Country Code EIT) AUTH: Greece (Country Code GR) INF: Holland (Country Code NL) UCA: non European LCS by literature study (Country Code nonEU) UoS: U.K. (Country Code UK)

A: Formalities

Participant code and who to contact.	UB_EIT EMANUELA CLEMENTI
E-mail	emanuela.clementi@mail.ing.unibo.it
This date (today, mm:dd:yyyy) and revision number (AZ).	02:15:2003
Location of LCS.	CESENATICO (North of the port)
Start date, length and/or end of works. Have there been any later changes? If so, when?	Start date: November 2001 Not yet completely finished
Design life - the minimum length of time the beach management scheme is designed to last.	25 years
Which tools and regulations are used for the design formulae (mathematical models, model tests, engineering experience, standards, recommendations).	Mathematical models, engineering experience, standards
Who fund the work (e.g. Public Administration or private company)?	Public Administration
Costs.	8.200.000.000 £ 4.250.000 EURO


LCS design.

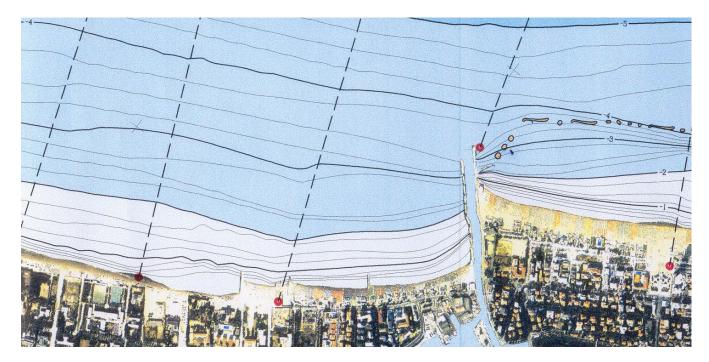
B: Geometry and construction materials

B1 System layout (aerial view)

Are shore attaching structures present (e.g. groins)?	Yes No
Are emerging head islands present?	Yes No

The following sketch concerns only shore parallel LCS; if the layout is different you must insert another sketch and specify parameters like the ones suggested. If a picture is available please insert it too.

The typical layout is given at Sea Bed (index SB) and at Crest Level (index CL).


Parameter	Description	Fill in box	Unit
D	Distance from shoreline	250	Meters
L _{SB}	Length of LCS at sea bed		Meters
L _{CL}	Length of LCS at crest level	770	Meters
G _{SB}	Gap between LCS at sea bed		Meters
G _{CL}	Gap between LCS at crest level	14	Meters
n	Number of LCS in system	1	

Remarks

It's only one element (length 770 m.) interrupted by 2 surface openings 14 m. wide and -1.0 m. deep from the LCS crest level. LCS is built next to a double longshore sandy bags barrier.

B2 Bathymetry of sea bed and beach

Please insert a dimensioned sketch if possible.

Scale 1:10000

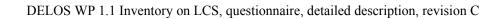
Bathymetry when LCS were built.

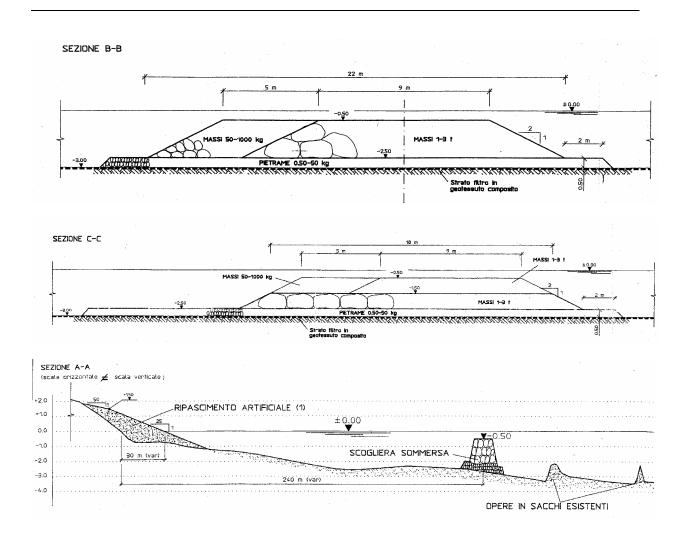
Description of bathymetry when LCS were build

Is detailed information (measurements) available? If so, please explain.

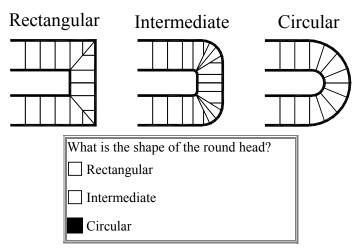
From bathymetries between 1984 and 1993, considerable subsidence is visible even offshore at -6/-8 m depth. In this period the shoreline, next to the North side of Cesenatico harbour, has receded 15 m.

Comparing 1995 and 1996 bathymetries, is visible an accretion zone near the North wharf of Cesenatico harbour, a considerable erosion in the central groin and in the final zone (North side) of flexible structures.

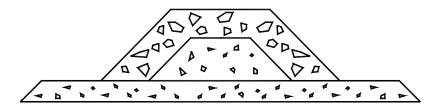

In the same period the volume variation of sediments in the area between sandy sack barriers is about -18000 m^3 .


B3 Trunk cross section/contour geometry – outer profile

If shore attached structures perpendicular to shoreline are present, please insert a sketch with typical longitudinal section and typical selected cross sections. Specify parameters as the ones given below. If the layout does not fit the following sketch please insert another sketch.


	BTS	Bss	B_{CL}	B _{SL}	BTL		
vard face $\frac{\ell_{\rm BS}}{\sqrt{\ell_{\rm ES}}} \sqrt{-1}$	ℓ _{1s} ▼	ass 1	ℓ _{cl} V	l α _{st}	<u>ℓ</u> п. ⊽	Landwa $\ell_{\text{BL}} \nabla$ $-\nabla \ell_{\text{EL}}$	ard face
Parameter		Descripti	on	Fill i	n box	Unit	
$\alpha_{\rm BS}$	Steepness	of sea bed, se	eaward				
$\alpha_{\rm BL}$	Steepness	of sea bed, la	indward				
$\alpha_{\rm SS}$	Steepness	of slope, sear	ward	1:	:2		
α_{SL}	Steepness	of slope, land	lward	1:	:2		
$\ell_{\rm BS}$	Level of s	ea bed at seav	ward toe	-3	.0 M	leters	
$\ell_{\rm ES}$	Level of e	xcavation, se	award	() M	leters	
$\ell_{\rm TS}$	Level of to	oe, seaward		-2	.5 M	leters	
$\ell_{\rm CL}$	Level of c	rest		-0	.5 M	leters	
$\ell_{\rm BS}$	Level of s	ea bed at land	lward toe	-3	.0 M	leters	
$\ell_{\rm ES}$	Level of e	xcavation, la	ndward	() M	leters	
$\ell_{\rm TS}$	Level of to	be, landward		-2	.5 M	leters	
B _{TS}	Width of t	oe, seaward			2 M	leters	
B _{SS}	Width of s	slope, seawar	d	4	4 M	leters	-
B _{CL}	Width of c	erest		1	4 M	leters	
B _{SL}		slope, landwa				leters	
B _{TL}	Width of t	oe, landward		2	2 M	leters	

Remarks (e.g. different layout along shoreline, other important parameters).



B4 Round head contour geometry

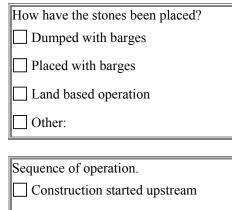
B5 Description of layers

Please insert a dimensioned sketch with the typical cross-section composition.

For each layer, please provide the following information.

ARMOUR

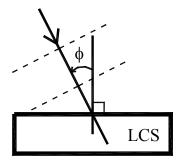
Parameter	Description	Fill in box	unit
	Material (e.g. quartzite, concrete)	Limestone and calcareousrock	
	Shape of blocks (e.g. quarry rock, sea stones, cubes)	Quarry rock	
ρ_r	Mass density of material	2600	kg/m ³
W	Weight of blocks	50-1000 (lanward) 1000-3000 (seaward)	Kg
D _{n50}	Nominal diameter	0.75-1.05	meters
Gr	Grading of the material (D_{85}/D_{15})		
	Geotextile between layers?	Yes No	


BEDDING LAYER

Parameter	Description	Fill in box	unit
	Material (e.g. quartzite, concrete)	Limestone	
	Shape of blocks (e.g. quarry rock, sea stones, cubes)	Quarry run	
ρ _r	Mass density of material		kg/m ³
W	Weight of blocks	0.5-50	Kg
D _{n50}	Nominal diameter	0.20	Meters
Gr	Grading of the material (D_{85}/D_{15})		
	Geotextile between layers?	Yes No	

Remarks (e.g. details on geotextile)

Geotextile is used between bedding layers and seabed as bottom protection.


B6 Construction method

Construction started downstream

C: Local meteomarine conditions at the structure

C1 Waves

Parameter	Description	Fill in box	unit
Hs	Design significant wave height		Meters
T _P	Design peak period		Seconds
φ	Design wave incidence angle		Radians

Remarks (provide information on wave statistics and wave spectra if available, e.g. H_s corresponding to return periods 1 month, 1 y, 10 y, 50 y. Please specify the source of the data)

T _R (YEARS)	H _s (METERS)	T _s (SECONDS)
1	4.1	9.1
10	5.5	10.5
25	6	11
50	6.4	11.4

C2 Water levels

Tidal water level variations

Parameter	Description	Fill in box	unit
HAT	Highest astronomical tide level	+1.3	Meters
MHWL	Mean tide high water level	+0.5	Meters
MWL	Mean water level	0.0	Meters
MLWL	Mean tide low water level	-0.5	Meters
LAT	Lowest astronomical tide level		Meters

Water level statistics (If available, please provide information on design water level and tide and surge generated water levels corresponding to return periods 1 month, 1 y, 10 y, 50y)

See the following table, where D = -3 m is the level of sea bed, and R_c is the submergence.

Δ (TIDE)	\mathbf{D} + Δ	R _C	H _s (METERS)			
(METERS)	(METERS)		T = 1Y	T =10YRS	T = 25YRS	T = 50YRS
-0.5	2.5	0	1.8	1.9	1.9	2
0	3	-0.5	1.9	2	2	2.1
0.5	3.5	-1	2.1	2.2	2.3	2.3
1	4	-1.5	1.4	2.5	2.5	2.6
1.3	4.5	-1.8	2.5	2.7	2.7	2.7

C3 Current

Tidal currents

Description & statistics if available

Littoral current direction: N-NW

Surge generated currents

Description & statistics if available (e.g. mean velocities as function of water depth/distance to shore line)

D: Sea bed and beach characteristics, incl. sediment transport

Description of the coast (e.g. bar type coast with gentle slope or plane coast with steep slope)

It's a bar type coast with gentle slope.

There's a double littoral defence of sandy bags barrier and some groins.

In the South of the area, the harbour of Cesenatico catches the most part of sediment transport and at the South of the harbour there are some emerging structures.

D1 Sea bed material at surface

Parameter	Description of sea bed material	Fill in box	Unit
	Material (e.g. quartzite)	Natural sand	
ρ _r	Mass density of material		kg/m ³
D _{n50}	Nominal diameter grain size		meters
Gr	Grading of the material (D_{85}/D_{15})		

Remarks (provide grain distribution if available)

D2 Beach material at surface

Parameter	Description of beach material	Fill in box	unit
	Material (e.g. quartzite)	Natural sand	
ρ _r	Mass density of material		kg/m ³
D _{n50}	Nominal diameter grain size		meters
Gr	Grading of the material (D_{85}/D_{15})		

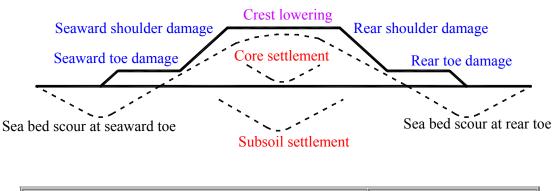
Natural supply?	Yes 🗌 No
Supplied by beach nourishment?	Yes 🗌 No

Remarks (provide grain distribution if available)

D3 Sediment transport

Description of the sediment transport (e.g. direction and amount of transport, distribution over the coastal profile)

Direction of sediment transport is from South to North.


Nominal diameter of sediments is 0.18*10⁻³ meters.

The following parameters must be completed only if artificially nourished and different form sea bed material.

Parameter	Description of artificial sediment	Fill in box	unit
	Material (e.g. quartzite)		
ρ _r	Mass density of material		kg/m ³
D _{n50}	Nominal diameter		meters
Gr	Grading of the material (D_{85}/D_{15})		

E: Structural performance

E1 Definition of failure modes

Please e-mail a sketch with dimensions of LCS cross-section	
when it was build compared to the appearance now (like the	
figure of failure modes) if possible. If so, please type the	
filename in the box.	

In the following please specify damages by failure mode (see figure of failure mode definition) and amount of damage. If you know the reason for the problems/failures (e.g. extreme wave climate/water level), please type it in the description boxes.

E2 Materials

Problems caused by deterioration?	Yes No
Problems caused by breakage?	Yes No

Description of the condition of the materials

E3 Settlement of the structure

Description of settlements of core/subsoil (e.g. instabilities in foundation, internal erosion). Please specify settlement in meters.

E4 Local erosion of sea bed/scour

Description of erosion/scour by roundheads (please specify scour depth)

Description of erosion/scour by trunk (please specify scour depth)

E5 Erosion and instability of slopes, shoulders, crest and toes

Stage of damage

No or marginal damage

Moderate to severe damage

Failure

Description of displacements of structural material (provide sketch if possible)

E6 Damage parameters

The definition of a displaced unit is, when a unit is displaced by more than D_{n50} . Try to give an estimate of the following damage parameters relevant to armour.

Parameter	Description	Fill in box	unit
The relative number of displaced units	$D(\%) = \frac{n_d (number of displaced units)}{Total number of units} \cdot 100$		%
The strip displacement	$N_{od} = \frac{n_d}{L/D_{n50}}$, L is the length of LCS		

F: Socio-economic aspects

What regime of property has the coast at this site? Private , Public full free access , Public limited access , Natural reserve , Don't know , Other (please specify):
Who decided that an LCS should be built at that site? Individual, acting for private purpose Individual, acting for public purpose (e.g. Natural park administrator) Local authority (e.g. city council) Regional authority (e.g. province level) National authority (e.g. ministry) Don't know Please give name of the authority whenever applicable:
What was the main motive for building the LCS? Coast erosion Inducing or maintaining recreational activity , please specify: Environmental concern , please specify: Other , please specify: Don't know
Was that LCS part of a larger coastal management plan? Yes , please specify: No , please specify: Don't know
Public opinion on that LCS: Construction was accompanied by public protest The public did not react Public opinion asked for the LCS Local commerce asked for the LCS Don't know Other (please specify):
Description of the coast: Urban, Densely constructedScarcely constructed, No apparent construction Are there dunes? Yes, No Has commercial activity changed significantly after construction of the LCS? hotels construction: More hotels, Less hotels, Unaffected, Don't know bars and similar construction: More, Less, Unaffected, Don't know advertising for the area: More, Less, Unaffected, Don't know other (specify):
Visual impact of LCS not already described in Part B: Are there parts of the LCS visible under average conditions? Poles , Cables , Reefs , Others (please specify):
Water quality changes since LCS construction Are there episodes of water turbidity since construction? No, Rare, Often, Permanent Were there episodes of water turbidity before construction?

No , Rare , Often , Permanent Has water quality otherwise been affected (for example, more or less detritus accumulating)? Please describe:

How would you qualify the foll	owing recreational activities	at or around	the LCS? (DK	= Don't know)
Fishing (recreational)	Ŭ L L	Scarce	Absent 🗋	DK 🗌 🤺
Seafood collecting	Intense 🗌 Moderate 🗍 S	Scarce 🗌	Absent 🗌	DK 🗍
Wildlife watching	Intense Moderate S	Scarce	Absent 🗌	DK 🗌
Sunbathing and similar	Intense 🗌 Moderate 🗌 S	Scarce 🗌	Absent 🗌	DK 🗌
Scuba diving	Intense 🗌 Moderate 🗌 S	Scarce 🗌	Absent 🗌	DK 🗌
Sailing and similar	Intense 🗌 Moderate 🗌 S	Scarce 🗌	Absent 🗌	DK 🗌
Other (specify)	Intense 🗌 Moderate 🗌 S	Scarce 🗌	Absent 🗌	DK 🗌
Could you describe those recrea	ational activities before the L	LCS was built	? (DK = Don't)	know)
Fishing (recreational)	Intense 🗌 Moderate 🗌 S	Scarce 🗌	Absent 🗌	DK 🗌
Seafood collecting	Intense 🗌 Moderate 🗌 S	Scarce 🗌	Absent 🗌	DK 🗌
Wildlife watching		Scarce 🗌	Absent 🗌	DK 🗌
Sunbathing and similar	Intense 🗌 Moderate 🗌 S	Scarce 🗌	Absent 🗌	DK 🗌
Scuba diving	Intense 🗌 Moderate 🗌 S	Scarce 🗌	Absent 🗌	DK 🗌
Sailing and similar	Intense 🗌 Moderate 🗌 S	Scarce	Absent 🗌	DK 🗌
Other (specify)	Intense 🗌 Moderate 🗌 S	Scarce 🗌	Absent 🗌	DK 🗌

Has that LCS had an environmental impact assessment before being built? Yes , No , Don't know Could you give its references and location (specify)?

Has there been an economic study on that LCS,

before it was built? Yes , No , Don't know , References: after it was built? Yes , No , Don't know , References:

G: Ecological aspects

What are the dominant species on the structures?

What are the dominant species in the sediment and fish assemblages around the structures?

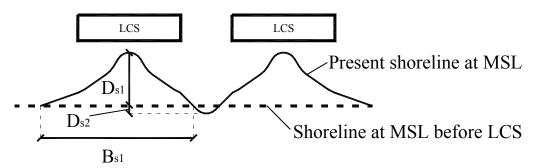
Were any environmental changes observed following the construction of the structure (e.g. increase of water turbidity, floating algal debris)?

H: Coastal protection performance

H1 Bathymetry and beach evolution

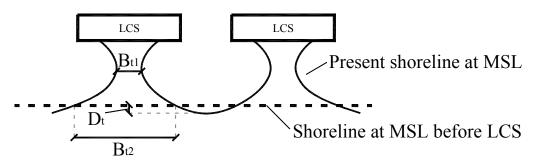
Description of historical beach evolution before LCS was built (10-20 years).

1978-1983: nourishment in the North side of Cesenatico harbour of sandy materials coming from South; construction of 3 groins.


1983-1987: nourishment and deposition of one sandy bag in front of the area.

1987-1997: nourishment, deposition of a second sandy bag between the first one and the shore line; construction of groins. In 1996 maintenance was stopped and caused critical condition: very narrow beach.

Description of beach evolution after LCS was built up to now.


Bathymetry next to LCS seaward in 2001 was bout -3 m. -3.5 m. depth, now is everywhere -3.5 m. depth.

H2 Salient formation

Parameter	Description	Fill in box	unit
D _{s1}	Max distance between new and old shoreline, seaward		Meters
D _{s2}	Max distance between new and old shoreline, landward		Meters
B _{s1}	Width of salient at old MSL		Meters

H3 Tombolo formation

Parameter	Description	Fill in box	unit
Dt	Distance between new and old shoreline, landward		Meters
B _{t1}	Minimal width of tombolo		Meters
B _{t2}	Width of tombolo at old MSL		Meters

H4 Renourishment

Description of renourishment (add more fill) (e.g. amount, how often)

Beach nourishment of 180.000 m³ of sandy material ($D_{n50}=0.2*10^{-3}$ meters).

H5 Down drift erosion

Please insert a sketch if relevant.

Description of down drift erosion (morphological impact, e.g. down drift erosion length and maximal down drift shoreline retreat)

I: Problems in general

Description of other problems/impacts

The response of the structure can be considered overall positive. Some undesired problems due to return currents through gaps, stability at roundheads and seaward erosion can be noted, in particular through the gap between Cesenatico harbour and LCS.

The last storm-surge (20 November -10 December 2002), has damaged LCS. The damage isn't yet estimated, but some blocks are displaced and some rents are visible in the structure; in particular the roundheads are mostly ruined.