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GENERAL INTRODUCTION  
 
The design of structures to be built in the nearshore region generally involves the evaluation 
of different possible layouts, under the effects of local wave and currents conditions, with the 
aim of minimizing costs and maximizing the desired results. In particular the design of low-
crested structures involves optimisation of several parameters, which influence both the 
position, and the shape of the structures. 
The possible layout of the structures to be designed can be tested experimentally in wave 
tanks and wave flumes using adequate scale models. An alternative and attractive procedure is 
to employ suitable numerical and mathematical models. In principle, a very advanced 
numerical model, able to correctly simulate all the nearshore phenomena (turbulence, waves, 
currents, sediment transport, etc.) could be equivalent or even superior to a physical model. In 
practice, the numerical models currently employed in engineering activities, use several 
assumptions and simplifications: the phenomena that can be simulated strictly depend on the 
governing equations solved by the model. Indeed, the great advantage of numerical and 
mathematical models is that their application is usually much less expensive than physical 
ones: it is certainly more economic to modify a computer file describing the bathymetry of the 
area under investigation than rebuild a physical model layout. 
The following report is structured into two discrete sections, the first one contributed by 
AUTh and the second one by UR3. In the first section a 2DH higher-order Boussinesq-type 
model combined with a porous flow model, developed for simulating flow around porous 
submerged structures is presented. On the other hand, in the second section enhancements on 
the applicability of Boussinesq-type equations (BTE) into the surf and swash zone are 
described.  
 
INTRODUCTION TO AUTh’s CONTRIBUTION 
 
In the present report the performance of the final version of a 2DH Boussinesq-type model is 
analysed.  The final version of the model, in comparison with the preliminary one, encounters 
modified equations in order to simulate with higher accuracy the effects of wave propagation 
in a coastal region where porous submerged structures are present. The Boussinesq model 
incorporates (a) higher-order non-linear terms, (b) additional dispersion terms, extending the 
applicability of the model into a wider range of depths and (c) extra terms accounting for the 
interaction between the waves over the structure and the flow within the porous structure. A 
depth-averaged Darcy equation, extended with Forchheimer terms, is used for calculating the 
flow inside the porous structure. Initially, the results of the 1D version of the model are 
evaluated against experimental data for wave propagation over a rubble mound trapezoidal 
breakwater on a sloping beach. Regular and irregular waves with ratio of water depth to wave 
height lower than 0.2 are considered. Comparisons show that the model is capable of 
predicting quite accurately the wave pattern over submerged structures with ratio of freeboard 
to water depth as low as 1/8 and ratio of wave height to freeboard up to 1/2. Also, the model 
reproduces with reasonable accuracy the phenomenon of high frequency energy generation 
behind the structure. Finally, the 2D version of the model is used for simulating wave 
transformation around a system of porous submerged breakwaters. The performance of the 
model is compared with experimental data for regular wave cases, obtaining satisfactory 
results.  
 
 
 
 



INTRODUCTION TO UR3’s CONTRIBUTION 
 
We consider in details two main features of Boussinesq-type models, which require 
improvement: the extension of the model to swash zone flows and the parameterisation of surf 
zone turbulence in order to simulate wave breaking. 
The first line of research finds motivation in the fact that considerable efforts have been spent 
in the recent past by several researchers in extending the applicability of BTE models to the 
intermediate depths. On the contrary, much less work has been done in studying the problems 
that arise in very shallow water, in proximity and into the swash zone. However, it is now 
clear that swash zone motions are a fundamental source of low frequency waves (LFW). 
These, radiating offshore, contribute to the transport of the bottom sediment, which is locally, 
i.e. close to the low-crested structures, put into suspension by waves and other organized 
structures like splash-down vortices but is transported mainly by LFW which deeply modify 
the bottom morphology over relatively large scales. It is then clear that a poor representation 
of swash zone flows is not only essential to the quantification of the LFW emitted but also to 
the large-scale sediment transport which, in turn, can influence the stability of man-made 
structures.  
The second motivation of our works comes from the observation that the modes and extent of 
transport of suspended sediment are greatly influenced by the velocity profile within the 
whole water column. In shallow water this is almost uniform, however, this is not the case of 
the flow in intermediate waters, where submerged structures are often placed. Detailed 
knowledge of the flow structure over the vertical has been the focus of recent research 
on BTEs. Of particular interest is the work of Veeramony and Svendsen (2000, VS 
hereinafter), who developed a rather sophisticated BTE model capable of representing the 
features of breaking waves by modeling the dynamics of vorticity injected in the flow by a 
wave roller. 
In VS's model the breaking terms are derived directly by a decomposition of the velocity into 
a potential and a rotational part. This was computed by solving the vorticity transport 
equation (VTE hereinafter). For closing the turbulence problem, VS assumed a simple eddy 
viscosity model, i.e. a uniform distribution over the depth. Such an assumption allowed to 
solve the VTE through an analytical approach. 
Although rather successful VS's approach is somehow simplistic and not flexible as it does 
not allow for a detailed description of the vertical structure of turbulence. Hence, in the 
present work the limiting hypothesis of uniform eddy viscosity has been removed and a 
numerical solution of the VTE is proposed. Such an approach is an improvement, since it 
permits investigation of the effects of different eddy viscosity profiles. 
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               SYMBOL INDEX 
 
 

a) Greek Symbols 

 

α : empirical coefficient 

α0 : wave amplitude (1/2 of wave height) 

α1 : porous resistance coefficient (viscous forces) 

α2 :  porous resistance coefficient (inertial forces) 

β : empirical coefficient 

βs : source shape coefficient  

γ : empirical coefficient 

δβ : mixing length coefficient 

∆x : spatial step  

∆t : time step 

η : free surface elevation  

ν : kinematic viscosity 

νe : eddy viscosity coefficient 

φ : porosity  

ω : angular frequency, ω = 2π/Τ 

 

b) Latin Symbols 

 

B : dispersion coefficient 

Cf : dimensionless parameter 

cr : inertial coefficient 

cm : added mass coefficient 

Ds = source function magnitude 

d50 : porous material mean size  

f : frequency, f = 1/T 

g : gravitational acceleration 

H : wave height 

h : water depth 

D42 : AUTh − 2DH final Boussinesq-type model                      2                                   
          
   

 



hs : porous medium thickness 

k : wave number, k = 2π/L 

K : intrinsic permeability 

KC : Keulegan-Carpenter number for porous media 

L : wave length 

T : wave period  

xs : source function centre 

u : depth-averaged, horizontal velocity vector 

uD : depth-averaged, Darcy velocity vector 

us : depth-averaged, seepage velocity vector 

u : horizontal velocity in x direction 

us : horizontal seepage velocity in x direction 
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1. Introduction 
In the last few decades, submerged breakwaters have been extensively used in costal zones for 

shoreline protection and to prevent beach erosion. Their presence results primarily in wave 

energy dissipation through the physical mechanisms of wave breaking and friction. In most of 

the cases these breakwaters are rubble mound porous structures whose design is based on 

empirical rules.  

Unquestionably, the ability to simulate accurately wave transformation over these structures is 

of major importance in achieving effective coastal design. Several researchers have presented 

a number of models addressing this problem. Sollitt and Cross (1972, 1976) in their 

pioneering work presented an analytical approach having as a starting point the unsteady 

equations for flow in the pores of a coarse granular media. Madsen (1974) also included in his 

linear wave model, inertia and resistance forces due to the presence of a rectangular porous 

structure. Wave propagation over porous seabeds was investigated theoretically and 

experimentally by Gu and Wang (1991), extending Sollitt and Cross (1972). Losada et al. 

(1995), examined experimentally the validity of the theory of Sollitt and Cross (1972), while 

Losada et al. (1996) presented a numerical model in order to describe regular wave interaction 

with submerged breakwaters. In his dissertation, van Gent (1995) simulated wave interaction 

with permeable coastal structures by developing a one-dimensional model based on the       

non-linear shallow-water wave equations and a two-dimensional (2DV) model based on the 

Reynolds-averaged Navier-Stokes equations. As part of his work porous media flow was 

studied both theoretically and experimentally with emphasis on the resistance of porous media 

to oscillatory wave motion. Incorporation of porous flow equations into Boussinesq-type 

models was recently achieved by Cruz et al. (1997) and Liu and Wen (1997). Cruz et al. 

(1997), derived a set of a 2D-Boussinesq equations over a porous bed of arbitrary thickness 

and tested their applicability on a plane porous slope and for refraction, diffraction and 

reflection around a submerged porous breakwater with an opening. Recently, Hsiao et al. 

(2002) presented a fully non-linear 2D-Boussinesq-type model for waves propagating over a 

permeable bed and compared model results with experimental data for the case of regular 

waves passing over a porous submerged breakwater. 

In this study wave evolution over porous submerged breakwaters is investigated with the use 

of a 2DH-Boussinesq-type model, following a procedure similar to that of Cruz et al. (1997). 

Computed results are compared with experimental measurements provided by Vidal et al. 

(2002), Gironella and Sánchez-Arcilla (2002) and Zanuttigh and Lamberti (2003).                  
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2. Description of the model 
 
2.1.Governing equations 
A higher-order Boussinesq-type model, with improved linear dispersion characteristics is 

used to describe wave motion in the regions upstream and downstream of the breakwater 

(Karambas and Koutitas, 2002). Above the breakwater the model incorporates two extra terms 

accounting for the interaction between the waves over the structure and the flow within the 

porous structure, one in the continuity equation and one in the momentum equation 

respectively, following the approach of Cruz et al. (1997). In two-dimensional depth-averaged 

form the governing equations (continuity and momentum equations) are:  
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where u = depth-averaged, horizontal velocity vector,  = surface elevation, h = water depth,                   

B = dispersion coefficient, u

η

s = depth-averaged, seepage (fluid) velocity vector inside the 

porous medium, hs = porous medium thickness and  = porosity. φ

The above variables are shown in Figure 1. 
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Figure 1. Definition of variables 
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The additional dispersion terms proportional to B extend the applicability of the model into a 

wider range of depths. As suggested by Madsen and Sørensen (1992), B is set equal to 1/15, 

value that gives the closest match to linear theory dispersion relation for h/L0 as large as 0.5. 

Equations (1) and (2) are solved in the region of the breakwater in conjunction with a depth-

averaged Darcy-Forchheimer (momentum) equation describing the flow inside the porous 

medium. Assuming that O[(hs/L)2] << 1 the two-dimensional, depth-averaged momentum 

equation written in terms of the fluid velocity us (uD =φus, uD = Darcy velocity)  reduces to 

(Cruz et al., 1997) 

 
                                     sssss uuuuusu 2

2
1tr αφφαηg  c ++∇−=∇+                              (3) 

 
which is refered as the non-linear long wave equation for porous medium. The fourth term in 

equation (3) is the Darcy term, while the fifth term is the Forchheimer term accounting for 

viscous and inertia forces respectively. In equation (3), cr = inertial coefficient, given by    

(van Gent, 1995)  
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φ
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   rc
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=                                                  (4) 

 
where cm = added mass coefficient and γ = empirical coefficient that accounts for the added 

mass.  

The porous resistance coefficients  and , are estimated from the following relationships 

(Ward, 1964, Sollitt & Cross, 1972, Losada et al., 1995, Cruz et al.,1997) 
1α 2α

 

                                                
K

Cα   ,
K
να f

21 ==                                                     (5)                      

 

where ν = kinematic viscosity (1.0·10-6 m2/sec), Cf = dimensionless parameter and K = 

intrinsic permeability (m2) given by (van Gent, 1994, 1995, Burcharth and Andersen, 1995) 
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⋅
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where α = empirical coefficient and d50 = the mean size of the porous material. 
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Burcharth and Andersen (1995), provide after Engelund (1953), a similar formula for 

calculating the intrinsic permeability, K 

 

                                                    
( )3
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=                                                          (7) 

 

According to Ward (1964), the parameter Cf is a constant, equal to 0.55, however, van Gent 

(1995) proposes the following expression for calculating Cf   
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where β  = empirical coefficient. 

An alternative expression for the coefficient  is (van Gent, 1995) 2α

 

                                                  
( )

3φd

φ1
KC
7.51β  α

50
2

⋅

−
⎟
⎠
⎞

⎜
⎝
⎛ +=                                               (9) 

 
where KC = (ÛT)/(d50· ) is a Keulegan-Carpenter number for porous media flow (Û = the 

maximum velocity in the porous medium).  

φ

A number of studies (Madsen, 1974, Vidal et al., 1988, van Gent, 1995) propose values for 

the non-dimensional coefficients α ,  and β γ  depending on the material type and the length 

scale of the solid particles. In the following table (Table 1) values for the coefficients α  and 

 obtained by van Gent (1995) after his experimental work are listed β

 

Table 1. Material tested and corresponding coefficients (van Gent, 1995) 

Material D50 φ  α  β  

Irregular rock 0.0610 0.442 1791 0.55 
Semi round rock 0.0487 0.454 0 0.88 
Very round rock 0.0488 0.393 1066 0.29 
Ιrregular rock 0.0202 0.449 1662 1.07 
Ιrregular rock 0.0310 0.388 1007 0.63 

Spheres 0.0460 0.476 2070 0.69 
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For the present model the value of 1000, 1.1 and 0.34 is chosen for α , β  and  respectively, 

as recommended by van Gent (1995). In contrast with the preliminary version of the model 

(Avgeris et al., 2003), where C

γ

f was considered equal to 0.55, in the present, final version Cf 

is treated as a variable. The corresponding values of K, Cf, ,  and c1α 2α r assuming that  = 

0.5, are calculated from equations (6), (8), (5) and (4) and are equal to 0.0005·d

φ

50
2, 0.0246, 

0.002/d50
2, 1.1001/d50 and 2.68 respectively.       

The one-dimensional form of equations (1) – (3) is written  
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2.2. Numerical scheme 
The governing equations are finite-differenced utilizing a high-order predictor-corrector 

scheme that employs a third-order explicit Adams-Bashforth predictor step and a fourth-order 

implicit Adams-Moulton corrector step (Wei and Kirby, 1995). The corrector step is iterated 

until the desirable convergence is achieved. First order spatial derivatives are discretized to 

fourth-order accuracy.  

 
2.3. Wave generation 

Wave generation is implemented inside the computational domain using the source function 

method as described by Wei et al. (1999). This method employs a mass source term in the 

continuity equation (1) that acts on a limited ‘source region’ while it is combined with wave 

damping sponge layers at the boundaries. The method is adapted to be consistent with the 
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Karambas and Koutitas (2002) equations, used in the present work, instead of the Nwogu type 

of equations, used by Wei et al. (1999). 

For random wave generation in a two-dimensional field where wave propagation direction 

forms an angle θ  with the x-axis, the expression for the source function term reads 

 

                      ( ) ( ) ( )[ ] ( )[ ] λω−−−= ∫∫ d d ωtλyiexp xxβexpω λ,D
4π

1  ty, x,f sss2s
2         (13) 

 
where  = wavenumber in y direction, x( )θ=ksin  λ s = centre of source function, = source 

shape coefficient and D

sβ

s = magnitude of the source function. 

In the case of regular waves with angular frequency ω  that propagate across the x-axis the 

above expression simplifies  
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The value of  is calculated from the following relationship  sβ
 

                                                   22s Lδ
80  β =       (15)  

 
where δ = 0.3, while 
  

         
( ) ( )

( )[ ]2
s1

34
s

2
0

s
khα1ωkI

hgkαω θ cos2α
  D 1

−

−
=                                           (16) 

 
where = –0.4, sα 3

1α  α ss1 +=   and 

  

              ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=

s

2

s
1 4β

lexp
β
π  I                                                        (17) 

 

where  = wavenumber in x direction. ( )θ=  kcos  l

Figure 2 depicts oblique, irregular waves generated inside a 2D computational field, applying 

the source function method. 
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Wave direction

 
 

Figure 2. Oblique, irregular waves (Jonswap spectrum, Hs = 0.09 m, Tp = 1.2 sec) generated    

inside a 2D computational field 

 
2.4. Wave breaking 
An eddy viscosity formulation is adopted in order to simulate wave breaking (Kennedy et al., 

2000) by introducing an eddy viscosity term in the right-hand-side of the momentum equation 

(2)  
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This term is analysed (subscripts of (x, y) and t denote spatial and temporal differentiation 

respectively) as 
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The eddy viscosity νe, is a function of both space and time and is given by 
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bbe ηηhδB   ν +=                                              (21)                         

D42 : AUTh − 2DH final Boussinesq-type model                      10                                 
          
   

 



where = mixing length coefficient equal to 1.2. The quantity Bbδ b controls the occurrence of 

breaking and varies from 0 to 1 as follows 
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The parameter ηt

* determines the onset and cessation of breaking and is defined as 
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where T* = transition time ( )hg5= , t0 = time that breaking was initiated (ηt > ηt
(I)), and thus 

t-t0 = age of the breaking event. The values of ηt
(I) and ηt

(F) are 0.35 gh and 

0.15 gh respectively. 

 
3. 1D Model − Comparison with UCA experiments 
Initially, model results were evaluated using data collected during the experiments that took 

place in the wave and current flume of the Coastal Laboratory of the University of Cantabria 

(UCA), Spain as part of the research carried out for DELOS project. The experimental set-up 

is described in detail by Vidal et al. (2002). Several data sets corresponding to different 

regular and irregular wave conditions were used for model verification.  

 
3.1. Experimental set–up 
The wave and current flume of the UCA Coastal Laboratory is 24 m long, 0.60 m wide and 

0.80 m high. The piston–type wavemaker has two attached free surface wave gauges 

integrated in a wave absorption system that allows the absorption of reflected waves from the 

experimental model. 

Wave propagation over a rubble mound breakwater on a sloping beach was tested. The 

breakwater had a trapezoidal shape, while its crest width ranged between 0.25 and 1.0 m. 

Crest elevation from the bottom (0.25 m), front and back slope angles (1:2) and rubble 
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characteristics were maintained constant. The model had two-layer armour of selected gravel 

and a gravel core. Armour and core characteristics are shown in Table 2. 

 

Table 2. Characteristics of the gravels used for the experimental model 

 W50
(g) 

D50
(cm) 

Porosity 
- 

Density 
(Kg/m3) 

Armour 153 3.94 0.53 2647 
Core 4.31 1.18 0.49 2607 

 

The rubble mound breakwater was built over a horizontal false bottom, 0.10 m over the 

bottom of the flume. In the frontal foot of the rubble, a Plexiglas ramp with 1:20 slope 

connected the false bottom with the bottom of the flume. In the rear end, another 8 m 1:20 

Plexiglas ramp simulated the rear beach. A sketch of the wave flume is illustrated in Figure 3. 

During the experiments water depth at the paddle was either 0.30 m, or 0.35 m, or 0.4 m 

resulting in a freeboard of 0.05 m, 0.00 and –0.05 m respectively. 

To assess free surface evolution and run-up on the beach, 15 resistive free surface gauges 

were installed along the flume. Three free surface gauges were installed in the slope in front 

of the breakwater to separate incident and reflected waves. Another two free surface gauges 

were located over the front slope of the structure. Six free surface gauges measured 

transmitted waves over the crest and in the flat bottom behind the structure. 

 
 Distances in cm 
 

Wavemaker 
476 200

380
25
100 8 

Recirculation tank Recirculation pipe Recirculation tank 1: 20 Plexiglas ramp Horizontal steel false bottom 
1: 20 Plexiglas ramp Bottom aperture 

2400 

800  
 
 
 
 
 
 
 
Figure 3. UCA experimental set-up  

 

3.2. Implementation of the model 
Evaluation of the numerical model was performed for the case of the submerged breakwater 

(freeboard =  –5 cm) with 1 m crest width. 

There were several data sets available, involving regular and irregular waves of TMA 

spectrum, respective to this layout. In this report the comparison of model results with the 
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experimental data of 2 regular tests (two out of the four chosen for comparison with the 

preliminary version of the model) and 3 irregular tests indexed with code numbers 215, 219, 

230, 243, 255, 263 and 275 (cases (a), (b), (c), (d), (e), (f) and (g)) is presented. For each case 

the target wave characteristics were: (a) H = 0.10 m, T = 1.6 sec, (b) H = 0.05 m, T = 3.2 sec, 

(c) Hs = 0.04 m, Tp = 1.6 sec, (d) Hs = 0.07 m, T = 1.6 sec and (e) Hs = 0.07 m, Ts = 2.4 sec.   

For the regular wave tests, the location of the wavemaker was defined as the centre of the 

source function. On the other hand, in the case of irregular waves the centre of the source 

function coincided with gauge 1 in order to use the free surface time series at this gauge as an 

input for the derivation of the source function record. The time step used was either             

 = 0.0025 sec (regular waves) or  = 0.002083 sec (irregular waves) and the grid size 

= 0.05 m. The layout of the computational domain is depicted in Figure 4. In this figure, 

the numbered vertical lines indicate the location of the wave gauges for which computed 

results are compared with experimental measurements. 

∆t ∆t

∆x

 

Gauges 
Sponge Layer Sponge Layer 

Source Function Centre 
(regular waves) 

Source Function Centre 
(irregular waves) 

 

Figure 4. Layout of the computational domain 

 

The porosity of the rubble mound was set equal to 0.5 while the characteristic diameter d50 of 

the gravel was set equal to 2 cm, resulting in a permeability K equal to 2⋅10-7 m2 (equation 6). 

Hence, the respective values of  and  are 5.0 and 55.0.  1α 2α

For all the regular wave cases considered, incident wave height was calculated by employing 

the Funke and Mansard incident-reflection analysis method, using the free surface elevation 

time series of wave gauges 1, 2 and 3. 

In Figures 8 – 15 comparison between computed results and experimental data are shown for 

case (a). Figures 8 – 13 present surface elevation time series at 6 wave gauges, (1) Figure 8 

seaward of the breakwater, over the sloping bed (gauge 2 or 3) (2) Figure 9 over the frontal 

slope of the breakwater (gauge 4 or 5), (3) Figure 10 over the breakwater crest (gauge 6),           
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(4) Figure 11 over the shoreward slope of the structure (gauge 7) and (5&6) Figure 12 and 

Figure 13 behind the breakwater (gauge 8 and gauge 9). Figures 14 and 15 illustrate 

comparatively for the same case the computed and experimental incident and transmitted 

spectra respectively. Figures 16 – 23, are analogous to Figures 8 – 15 for test case (b). Figures 

24 – 28, 29 – 33 and 34 – 38 present comparatively, computed and recorded free surface 

elevation time series at wave gauges 4 – 8 for cases (c), (d) and (e) respectively. Finally, 

Figure 45 shows the values of the transmission coefficient Ktrans as calculated from model 

results and the experimental data for cases (a) – (d).    

 

4. 1D Model − Comparison with UPC experiments 
Further evaluation of the model results was performed with the use of the experiments that 

were carried out in the wave flume of the Maritime Engineering Laboratory of UPC, Spain. 

These experiments in comparison to the UCA experiments provide a helpful tool in order to 

assess scale effects. 

 

4.1. Experimental set–up 
The experimental layout is depicted in Figure 5 and was quite similar to that of the University 

of Cantabria. A rubble mound breakwater with 1:2 slopes that consisted of an armour layer 

(d50 = 10.5 cm) and a core (d = 20–40 mm) of selected gravel was built over a horizontal 

plane approximately in the middle of the wave flume. The crest width of the structure was 

either 1,225 m or 2,345 m and rose 2,705 m over the bottom of the flume. In front of the 

breakwater lied an inclined bed with two different successive slopes (1/9.35 and 1/28). 

Similarly to the UCA experiments, water depth at the wavemaker ranged between three levels 

(2.82 m, 2.62 m and 2.42 m), thus the breakwater was either submerged (freeboard = –11.5 

cm) or emerged (freeboard = 8.5 cm and 28.5 cm). At the rear end of the flume an absorbing 

inclined beach, constructed of irregular rock dissipated the forthcoming wave energy. Free 

surface elevation was measured with seven gauges, from which five were installed at the 

seaward region, in front of the breakwater and the rest behind it. For more details see 

Gironella and Sánchez-Arcilla (2002). 
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Figure 5. Sketch of the UPC experimental layout 

 
4.2. Implementation of the model 
In order to evaluate the performance of the numerical model against scale effects, comparison 

was carried out for the case of the submerged breakwater (freeboard = –11.5 cm) with 2,345 

m crest width. 

Considering regular wave tests, there were 3 data sets available, according to this layout. 

However, only 1 test out of the 3, was appropriate for model testing, since the incident wave 

characteristics of the other tests resulted in a ratio of wave height to freeboard far greater than 

1/2. For this test (index number R6F3C2) comparison of model results with the experimental 

data (case (a)) is presented. The target wave characteristics for this case were: (a) H = 0.28 m, 

T = 3.11 sec. 

The values used for the time step and the grid size were ∆t  = 0.005 sec and ∆ = 0.10 m. 

Considering a uniform porosity for the breakwater equal to 0.4 and a mean diameter d

x

50 of  

the porous material equal to 7 cm the corresponding values for K, Cf, ,  and c1α 2α r are 

8.71⋅10-7, 0.022, 1.148, 23.571 and 3.775.      

Similarly to the UCA test cases, incident wave height was calculated analysing the time series 

of wave gauges 3, 4 and 5 with the Funke and Mansard method. 

Figures 39 – 44 show in comparison, computed results and experimental measurements for 

case (a). Figures 39 – 42 present surface elevation time series at 4 wave gauges, (1) Figures 

39, 40 and 41 in front of the breakwater, over the sloping bed (gauge 3, 4 and 5) and (2) 

Figure 42 at the shoreward horizontal plane behind the structure (gauge 6). Figures 43 and 44 

depict comparatively the computed and experimental incident and transmitted spectra 
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respectively for case (a). Finally, Figure 45 shows the values of the transmission coefficient 

Ktrans as calculated from model results and the experimental data for the same case. 

 

5. 2D Model − Wave transformation around a system of porous 

submerged breakwaters − Comparison with Aalborg experiments   
Waves travelling over porous breakwaters are subject to transformation due to combined 

physical effects, including refraction, diffraction, shoaling and damping. Apparently, the 

simulation of such complicated processes is quite a demanding task. The 2D version of the 

model is firstly applied to simulate wave transformation around a system of porous 

submerged breakwaters that consists of two (or infinite in a generic sense) trapezoidal rubble 

mounds with 1:6.66 forward slope, 1:20 backward slope and 1 m crest width. The structures 

are located on a 1:30 sloping bed. The depth of the water on the horizontal bottom is 0.5 m 

and the freeboard –0.2 m. Breakwater width and length are 3 and 4 m respectively, while the 

opening between the structures is 4 m. The mean diameter of the breakwater material (d50) is 

considered equal to 4 cm and the porosity equal to 0.4. Figure 6 shows the bathymetry of the 

2D field. The computational domain is restricted to the half of the field, considering that there 

is a symmetry line along the middle of the opening. Both at the left and the right boundaries 

of the computational domain, wave-reflecting (symmetry) boundary conditions are imposed. 

A regular (case (a)) and an irregular (JONSWAP spectrum, (case (b)) wave cases are 

considered, with incident wave characteristics H = 0.1 m, T = 1.6 sec and Hs = 0.1 m, Tp = 1.6 

sec, respectively. 

 

 
Figure 6. Bathymetry of the 2D computational field 
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In Figure 46 and Figure 47, snapshots of free surface elevation for case (a) and case (b) 

respectively are depicted, while Figures 48 and 49 show the wave-induced current fields 

averaged over two (case (a)) and thirty (case (b)) wave periods. 

Further, preliminary tests of the present model against the 3D hydrodynamic experiments 

carried out under the framework of the DELOS project at the 9.7 x 12.5 basin of Aalborg 

University, Denmark were performed. Two different layouts were considered during these 

experimental tests. The first one was a symmetrical layout, composed by two detached porous 

breakwaters forming a rip channel in the middle. The second layout consisted of a single 

breakwater inclined at 300 with respect to the beach. Detailed description of the experimental 

layouts and the characteristics of the tests is provided by Zannutigh and Lamberti (2003). 

Here the numerical results of a single regular wave test (test 19) corresponding to the 

symmetrical layout with the submerged (freeboard = –0.07m) narrow crest structures are 

presented. A plan view of this layout is shown in Figure 7. For this test the target wave 

characteristics were: H = 0.1026 m, T = 1.81 sec. In the model, the porosity of the rubble 

mound was set equal to 0.5 while the characteristic diameter d50 of the gravel was set equal to 

3.5 cm. 
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Figure 7. Plan view of Aalborg experimental layout 1 (narrow crest structures) 
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Figures 50 – 51 present a comparison of surface elevation time series between model results 

and experimental data at 2 wave gauges, Figure 50 seaward of the breakwater, over the 

horizontal bed (gauge 11) and Figure 51 behind the breakwater (gauge 19). Finally, Figure 52 

depicts the wave-induced current field averaged over two wave periods for the same test. 

 

6. Evaluation of model performance 
The comparisons indicate that the model simulates quite well wave evolution at the regions 

before and over the breakwater. Behind the breakwater the decomposition of the leading wave 

component into higher frequency waves, comparatively to the preliminary version of the 

model, is predicted with higher accuracy due to the additional higher-order terms. A 

deficiency of the model affecting the results is that the linear dispersion relationship is not 

accurate, although improved. According to Gobbi and Kirby (1999) this deficiency seems to 

be important. Apparently, model performance is also influenced by the fact that the wave 

energy dissipation rate due to porous resistance and wave breaking is not exactly predicted. 

Present model behaviour is enhanced, compared with the behaviour of weakly non-linear 

Boussinesq-type models applied in the simulation of wave evolution over impermeable and 

permeable submerged bars (Gobbi and Kirby, 1999, Hsiao et al., 2002). Thought, it should be 

emphasised that in the present study the model was tested for rather extreme geometrical 

conditions as far as the ratios of wave height and water depth to freeboard of the submerged 

breakwater are concerned. Also, the successive, comparative evaluation of model results with 

the UCA and UPC experimental data, demonstrates that the model is quite insensitive to scale 

effects.      

 

7. Conclusions 
A 2DH-Boussinesq-type model combined with a depth-averaged Darcy-Forchheimer equation 

is applied in this study for simulating wave propagation over submerged porous breakwaters. 

The model was tested against experimental measurements for the case of a rubble mound 

trapezoidal breakwater on a sloping beach. Both regular and irregular wave cases were used in 

order to assess model performance. The comparative analysis demonstrates that the model 

predicts quite accurately the wave pattern over and behind the structure. Additional higher 

order non-linear terms improve the ability of the model to describe the process of non-linear 

harmonic generation behind the structure. 
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Figure 8.Computed and experimental free surface elevation (UCA, H=0.10, T=1.6).                                     
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Figure 9.Computed and experimental free surface elevation (UCA, H=0.10, T=1.6).                               
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Figure 10.Computed and experimental free surface elevation (UCA, H=0.10, T=1.6).                                    
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Figure 11.Computed and experimental free surface elevation (UCA, H=0.10, T=1.6). 
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Figure 12.Computed and experimental free surface elevation (UCA, H=0.10, T=1.6). 
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Figure 13.Computed and experimental free surface elevation (UCA, H=0.10, T=1.6).                                  
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Figure 14.Computed and experimental incident spectra (UCA, H=0.10, T=1.6).                                     
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Figure 15.Computed and experimental transmitted spectra (UCA, H=0.10, T=1.6).                                          
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Figure 16.Computed and experimental free surface elevation (UCA, H=0.05, T=3.2).                                    
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Figure 17.Computed and experimental free surface elevation (UCA, H=0.05, T=3.2).                               
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Figure 18.Computed and experimental free surface elevation (UCA, H=0.05, T=3.2). 
 

40 44 48 52 56
t (sec)

-0.02

-0.01

0

0.01

0.02

0.03

η 
(m

)

Gauge 7
Experiment
Model

 
            

Figure 19.Computed and experimental free surface elevation (UCA, H=0.05, T=3.2). 
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Figure 20.Computed and experimental free surface elevation (UCA, H=0.05, T=3.2). 
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Figure 21.Computed and experimental free surface elevation (UCA, H=0.05, T=3.2). 
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Figure 22.Computed and experimental incident spectra (UCA, H=0.05, T=3.2).                                     
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Figure 23.Computed and experimental transmitted spectra (UCA, H=0.05, T=3.2). 
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Figure 24.Computed and experimental free surface elevation (UCA, Hs=0.04, Tp=1.6). 
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Figure 25.Computed and experimental free surface elevation (UCA, Hs=0.04, Tp=1.6). 
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Figure 26.Computed and experimental free surface elevation (UCA, Hs=0.04, Tp=1.6). 
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Figure 27.Computed and experimental free surface elevation (UCA, Hs=0.04, Tp=1.6).                              
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Figure 28.Computed and experimental free surface elevation (UCA, Hs=0.04, Tp=1.6).                                    
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Figure 29.Computed and experimental free surface elevation (UCA, Hs=0.07, Tp=1.6). 
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Figure 30.Computed and experimental free surface elevation (UCA, Hs=0.07, Tp=1.6). 
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Figure 31.Computed and experimental free surface elevation (UCA, Hs=0.07, Tp=1.6). 
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Figure 32.Computed and experimental free surface elevation (UCA, Hs=0.07, Tp=1.6). 
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Figure 33.Computed and experimental free surface elevation (UCA, Hs=0.07, Tp=1.6). 
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Figure 34.Computed and experimental free surface elevation (UCA, Hs=0.07, Tp=2.4). 
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Figure 35.Computed and experimental free surface elevation (UCA, Hs=0.07, Tp=2.4). 
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Figure 36.Computed and experimental free surface elevation (UCA, Hs=0.07, Tp=2.4). 
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Figure 37.Computed and experimental free surface elevation (UCA, Hs=0.07, Tp=1.6). 
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Figure 38.Computed and experimental free surface elevation (UCA, Hs=0.07, Tp=2.4). 
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Figure 39.Computed and experimental free surface elevation (UPC, H=0.28, T=3.11). 
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Figure 40.Computed and experimental free surface elevation (UPC, H=0.28, T=3.11). 
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Figure 41.Computed and experimental free surface elevation (UPC, H=0.28, T=3.11).                                    
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Figure 42.Computed and experimental free surface elevation (UPC, H=0.28, T=3.11).                                    
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Figure 43.Computed and experimental transmitted spectra (UPC, H=0.28, T=3.11). 
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Figure 44.Computed and experimental transmitted spectra (UPC, H=0.28, T=3.11). 
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Figure 45.Computed and experimental transmission coefficient Ktrans (UCA and UPC). 
 
 

 
Figure 46. Snapshot (t = 40 sec) of free surface elevation (Case (a), H=0.1, T=1.6) 
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Figure 47. Snapshot (t = 40 sec) of free surface elevation (Case (b), Hs=0.1, Tp=1.6) 
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Figure 48. Mean wave-induced current field (Case (a), H=0.1, T=1.6)        
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Figure 49. Mean wave-induced current field (Case (b), Hs=0.1, Tp=1.6)                                 
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Chapter 1

Introduction

The design of structures to be built in the nearshore region generally involves the evaluation of
di�erent possible layouts, under the e�ects of local wave and currents conditions, with the aim
of minimizing costs and maximizing the desired results. In particular the design of low-crested
structures involves optimization of several parameters which in�uence both the position and the
shape of the structures.

The possible layout of the structures to be designed can be tested experimentally in wave
tanks and wave �umes using adequate scale models. An alternative and attractive procedure is to
employ suitable numerical and mathematical models. In principle, a very advanced numerical model,
able to correctly simulate all the nearshore phenomena (turbulence, waves, currents, sediment
transport, etc.) could be equivalent or even superior to a physical model. In practice, the numerical
models currently employed in engineering activities, use several assumptions and simpli�cations: the
phenomena that can be simulated strictly depend on the governing equations solved by the model.
Indeed, the great advantage of numerical and mathematical models is that their application is
usually much less expensive than physical ones: it is certainly more economic to modify a computer
�le describing the bathymetry of the area under investigation than rebuild a physical model layout.

The development of numerical models to be applied for nearshore �ows has, therefore, received
great attention in the last fourty years. The interest in numerical models increases as much as
computer speed and di�usion do. This work is aimed at improvingBoussinesq Type Equations
(BTE hereinafter) models, which belong to a speci�c category of numerical models applicable to
nearshore �ows and can be used to simulate wave transformation and currents generation. We
consider in details two main features of BTE models which require improvement: the extesion of
the model to swash zone �ows and the parametrization of surf zone turbulence.

The �rst line of research �nds motivation in the fact that considerable e�orts have been spent
in the recent past by several researchers in extending the applicability of BTE models to the
intermediate depths. On the contrary, much less work has been done in studying the problems
that arise in very shallow water, in proximity and into the swash zone. However, it is now clear
that swash zone motions are a fundamental source of low frequency waves (LFW hereinafter) (e.g.
Watson et al. 1994; Mase 1995; Baldock et al. 1997). These, radiating o�shore, contribute to the
transport of the bottom sediment which is locally, i.e. close to the low-crested structures, put
into suspension by waves and other organized structures like splash-down vortices (e.g. Fredsoe
and Sumer 1997; Chang et al. 2001) but is transported mainly by LFW which deeply modify the
bottom morphology over relatively large scales (a.o. Holman and Bowen 1982; Beach and Sternberg
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1991; O'Hare and Huntley 1994; Aagaard and Greenwood 1994). It is then clear that a poor
representation of swash zone �ows is not only essential to the quanti�cation of the LFW emitted
but also to the large-scale sediment transport which, in turn, can in�uence the stability of man-made
structures. Research in providing suitable shoreline boundary conditions for BTE models is very
new (e.g. Madsen et al. 1997; Lynnet et al. 2002) and until recently the swash zone was modelled
either as a perfecly re�ecting wall or as a perfectly absorbing boundary. None of these methods,
however, can describe the generation of LFW due to swash motions. On the contrary, they act in
a di�erent, unphysical way. The perfectly absorbing boundary is such that not even the free LFW
propagating towards the shore can be re�ected out to sea. Hence, the energy content in the LFW
range is always too small. The perfectly re�ecting wall, though re�ecting all the LFW generated
during the propagation of waves towards the shore, cannot account for local generation within the
swash zone. Hence, the energy content in the LFW range can either be too large or too small with
respect to natural conditions.

The second motivation of our works comes from the observation that the modes and extent
of transport of suspended sediment are greatly in�uenced by the velocity pro�le within the whole
water column. In shallow water this is almost uniform, however, this is not the case of the �ow in
intermediate waters, where submerged structures are often placed. Detailed knowledge of the �ow
structure over the vertical has been the focus of recent research on BTEs (e.g. Rakha et al. 1997;
Ozanne et al. 2000; Veeramony and Svendsen 2000). Of particular interest is the work of Veeramony
and Svendsen 2000 (VS hereinafter) who developed a rather sophisticated BTE model capable of
representing the features of breaking waves by modeling the dynamics of vorticity injected in the
�ow by a wave roller.

In VS's model the breaking terms are derived directly by a decomposition of the velocity into
a potential and a rotational part. This was computed by solving the vorticity transport equation
(VTE hereinafter). For closing the turbulence problem, VS assumed a simple eddy viscosity model,
i.e. a uniform distribution over the depth. Such an assumption allowed to solve the VTE through
an analytical approach.

Although rather succesful VS's approach is somehow simplistic and not �exible as it does not
allow for a detailed description of the vertical structure of turbulence. Hence, in the present work
the limiting hypotesis of uniform eddy viscosity has been removed and a numerical solution of the
VTE is proposed. Such an approach is an improvement, since it permits investigation of the e�ects
of di�erent eddy viscosity pro�les.

The rest of this report is organized as follows. In chapter 2 depth-integrated wave-resolving
models are introduced. The procedure for obtaining both NSWEs and BTEs is illustrated. A
speci�c numerical model, coded by the present Authors for solving the BTEs, is described. A
detailed analysis of the problems related to using BTE in very shallow water is �nally carried out.
This chapter is a review of works published during the course of DELOS project.

In chapter 3 new shoreline boundary conditions for Boussinesq-type models are derived. These
boundary conditions are then implemented in the numerical model described in chapter 2, with the
aim of verifying their capability in simulating swash zone hydrodynamics. The comparison of the
results obtained by means of the numerical model against analytical solutions shows the very good
performance of the new shoreline boundary conditions. Also results reported in this chapter have
been published under the patronage of DELOS.

In chapter 4 a new method for simulating wave-breaking into BTE models is presented and
veri�ed. According to the proposed method the governing equations are derived dropping the
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assumption of irrotationality of the �ow. The resulting equations present extra terms in comparison
with the classical BTEs that take into account wave-breaking generated vorticity. The new method
allows wave-averaged vertical pro�les of the horizontal velocity to be not self-similar and is capable
of simulating important features of nearshore �ows such as the undertow. Comparison of the model
results with available experimental data suggests good performance of the model. Results of this
chapter form the basis for a couple of papers in cours of completion.

Conclusions and some remarks on ongoing research are summarized in chapter 5.
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Chapter 2

Depth-integrated wave-resolving models

In this chapter the depth-integrated wave-resolving models for simulating the nearshore
hydrodynamics are introduced. In section 2.1 a derivation of the typical model equation is
presented, obtaining the NSWE and the BTE. Emphasis is posed on the di�erences between the
two formulations and on the advantages and disadvantages of each. A numerical model, coded by
the present Authors for solving the BTE is described in section 2.2. This model was used to test
the shoreline boundary conditions (SBCs hereinafter) derived in chapter 3 and the wave-breaking
method presented in chapter 4. In section 2.3 the applicability of BTE in very shallow waters
is investigated on the basis of the analytical solution of Carrier and Greenspan (1958), valid for
periodic waves propagating on a sloping beach. Notice that in order to simplify the derivation of
the equations we limit our presentation to one horizontal dimension. Therefore instead of obtaining
2DH equations, in this chapter and more generally in the rest of this report we deal with 1DH
equations.

The results presented in section 2.3 are innovative since before this work no careful investigation
was carried out in order to understand the role of dispersive-nonlinear terms of BTE in very shallow
water. The analysis shows that, if not properly handled, BTE may become extremely unstable in
the swash zone, leading to diverging solutions.

2.1 The BTE and the NSWE
In this section a derivation of the NSWE and of the BTE is presented. Several possible approaches
have been followed in the past. We decided to follow the derivation by Veeramony and Svendsen
(1999), which is based on the direct integration over the water depth of the Reynolds equations.
The aim of this section is not to provide the reader with a very detailed derivation of the equations,
but to brie�y illustrate the basic steps, the simpli�cations and the assumptions that lead to NSWE
and BTE.

2.1.1 Scaling parameters, reference frame and variable used
Two independent non-dimensional parameters are used during the derivation for estimating the
order of magnitude of each term appearing in the equations. These parameters are obtained as
ratios of the length scales associated with the wave motion: the wave amplitudea0, the wave
number k0 = 2π/L (L being the wavelength) and the water depth h0. The �rst non-dimensional
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parameter δ = a0/h0 measures the nonlinearity of the wave. The second parameter µ = k0h0

measures the frequency dispersiveness of the waves. Large values ofµ characterize the motion of
waves in deep water, while small values ofµ are typical of long waves in very shallow water where
wave celerity depends on the water depth rather than on the wave frequency.

On �gure 2.1 a typical problem geometry and the employed reference frame are shown. The origin
of the cartesian reference frame is at the undisturbed free surface,x is the horizontal coordinate,
positive shoreward; z is the vertical coordinate, measured positive upwards. h is the undisturbed
water depth, ζ the water elevation with respect to the undisturbed level. d is the total water depth,
given by the sum of h and ζ. In the following sections u′ indicates the horizontal component of the
velocity (measured positive rightward in the adopted reference frame),w′ the vertical one (positive
upwards).

Nondimensional variables are widely used in the following. These are de�ned by the following
relationships (superscript ∗ represents hereinafter non dimensional quantities)

x∗ = k0x, z∗ = z
h0

, t∗ = k0
√

gh0 t

u′∗ = δ
√

gh0 u′, w′∗ = δµ
√

gh0 w′
(2.1.1)

x

z

d(x, t) h(x)

ζ(x, t)

Figure 2.1: Sketch of the typical problem geometry.

2.1.2 Boundary conditions and preliminary assumptions
In order to integrate the Reynolds equations over the water depth proper boundary conditions
should be imposed at the limits of the domain of interest. At the free surface it is assumed that a
particle originally on the surface stays at the surface during wave propagation. From a mathematical
point of view this kinetic boundary condition can be expressed as

w′ (ζ) =
∂ζ

∂t
+ u′ (ζ)

∂ζ

∂x
. (2.1.2)

At the free surface is, furthermore, assumed that atmospheric pressure is constant and equal to
zero:

p (ζ) = 0. (2.1.3)
An impermeable bottom is assumed in the derivation. Thus the kinematic condition at the bottom
can be expressed as

w′ (−h) = −u′ (−h)
∂h

∂x
. (2.1.4)
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Several assumptions and simpli�cations are used during the derivation of the equations. These
are reported here below and brie�y discussed. The �uid is assumed to be of constant density and
inviscid. The motion of the bulk �uid is non-rotational and a velocity potential exists. The shear
stress at the bottom and at the free surface is neglected. This coincides with imposing a free slip
condition at the bottom and to neglect any wind force acting on the water.

2.1.3 The depth-integrated continuity equation
We start the derivation from the two-dimensional di�erential form of the continuity equation

∂u′

∂x
+

∂w′

∂z
= 0. (2.1.5)

Integration of (2.1.5) from the free surface (z = ζ) to the bottom (z = −h) gives
∫ ζ

−h

∂u′

∂x
dz + w′(ζ)− w′(−h) = 0. (2.1.6)

Use of the boundary conditions (2.1.2) and (2.1.4) allows to eliminate vertical velocities at the
boundaries and application of the Leibniz rule gives

∂ζ

∂t
+

∂

∂x

∫ ζ

−h
u′ dz = 0 (2.1.7)

that is the general, dimensional form of the depth-integrated continuity equation.

2.1.4 The depth-integrated momentum equation
We start from the horizontal and vertical momentum equation, which read respectively

∂u′

∂t
+

∂u′2

∂x
+

∂u′w′

∂z
= −1

ρ

∂p

∂x
+

1
ρ

(
∂τxx

∂x
+

∂τxz

∂z

)
, (2.1.8)

∂w′

∂t
+

∂u′w′

∂x
+

∂w′2

∂z
= g − 1

ρ

∂p

∂z
+

1
ρ

(
∂τxz

∂x
+

∂τzz

∂z

)
(2.1.9)

where τxx and τzz are the normal deviatoric stresses and τxz is the turbulent stress. Integration of
(2.1.8) over the water depth, use of boundary conditions, Leibniz rule and of assumptions about
the forces acting on the �uid at the free surface give

∂

∂t

∫ ζ

−h
u′ dz +

∂

∂x

∫ ζ

−h
u′2 dz =

p (−h)
ρ

∂h

∂x
+

∂

∂x

∫ ζ

−h
(−p + τxx) dẑ. (2.1.10)

The expression for the pressure p can be obtained by integrating (2.1.9) from the surface to a
generic level z, using both the boundary conditions and the Leibniz rule:

p (z)
ρ

= g (ζ − z)− w′2 +
∂

∂t

∫ ζ

z
w′ dz +

∂

∂x

∫ ζ

z

(
u′w′ − τxz

ρ

)
dz. (2.1.11)
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In order to write (2.1.11) in non-dimensional variables, a scaling for the turbulent stress term is
to be introduced. Veeramony and Svendsen (1999) proposed the following scaling by assuming an
eddy viscosity representation of τxz

τxz = δµρgh0νt

(
∂u′

∂z
+ µ2 ∂w′

∂x

)
(2.1.12)

where νt is the eddy viscosity.
By replacing the dimensional variables with the non-dimensional ones given in section 2.1.1 and

making use of (2.1.12), equation (2.1.11) becomes

p∗ (z∗) =
(

ζ∗ − z∗

δ

)
− δµ2w′∗2 + µ2 ∂

∂t∗

∫ δζ∗

z∗
w′∗ dz∗

+δµ2 ∂

∂x∗

∫ δζ∗

z∗
u′∗w′∗ dz∗ − µ2 ∂

∂x∗

∫ δζ∗

z∗
νt

∂u′∗

∂z∗
w′∗ dz∗ + O

(
µ4

)
.

(2.1.13)

Equation (2.1.13) is suitable to illustrate the e�ects of frequency dispersiveness on the pressure
distribution over the water depth. The �rst term of the right hand side of (2.1.13) represents
the hydrostatic pressure component. The other terms, of orderO

(
µ2

)
and O

(
δµ2

)
deviate the

pressure distribution from the hydrostatic, thus allowing for frequency dispersion. Neglecting all
these smaller terms coincides with treating non dispersive nonlinear waves, i.e. very long waves.
As shown in the following sections neglecting terms of order equal or smaller thanO

(
µ2

)
leads

to obtain the NSWE, while retaining these terms leads to the BTE, which can simulate frequency
dispersion.

By inserting non-dimensional variables into (2.1.10), then using both the expression for the
pressure (2.1.13) and the following form of the continuity equation integrated from−h to the
generic level z

w′∗(z) = − ∂

∂x∗

∫ z∗

−h∗
u′∗ dz∗ (2.1.14)

gives the following combined momentum equation in terms of horizontal velocity integrals and water
surface elevation

∂

∂t∗

∫ δζ∗

−h∗
u′∗ dz∗ + (h∗ + δζ∗) ζ∗x∗ + δ

∂

∂x∗

∫ δζ∗

−h∗
u′∗2 dz∗+

− µ2

∫ δζ∗

−h∗

∂2

∂x∗∂t∗

∫ δζ∗

z∗

∂

∂x∗

∫ z∗

−h∗
u′∗ dz∗ dz∗ dz∗+

− µ2

∫ δζ∗

−h∗

∂2

∂x∗2

∫ δζ∗

z∗
νt

∂u′∗

∂z∗
dz∗ dz∗ +−δµ2

∫ δζ∗

−h∗

∂

∂x∗

(
∂

∂x∗

∫ z∗

−h∗
u′∗ dz∗

)2

dz∗+

− δµ2

∫ δζ∗

−h∗

∂2

∂x∗2

∫ δζ∗

z∗
u′∗

∂

∂x∗

∫ z∗

−h∗
u′∗ dz∗ dz∗ dz∗ = 0. (2.1.15)

2.1.5 An approximate expression for the horizontal velocity
The depth-integrated continuity and momentum equations (2.1.7) and (2.1.15) can be solved
analytically provided that a vertical pro�le of the horizontal velocityu′ is assumed. By assuming
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irrotationality of the �uid motion such pro�le can be obtained by solving the Laplace equation
approximately, imposing the proper boundary conditions at the free surface and at the bottom. In
classical Boussinesq models this approximate solution is achieved by expressing the velocity potential
as an in�nite polynomial series. In the original work that is followed in this section (Veeramony and
Svendsen 1999) a very original approach was presented. Those Authors assumed that the wave-
breaking process generates vorticity. Therefore the �uid motion cannot be tread as irrotational
and approximate solution for the horizontal velocity was obtained by using the streamfunction
instead of a velocity potential. In this approach the �nal expression for the velocity contains terms
that represent the in�uence of the wave-breaking generated vorticity on the �uid motion. The
�nal Boussinesq equations obtained by using this expression for the velocity can naturally simulate
the dissipative e�ects of wave-breaking. Furthermore, since the horizontal velocity depends on
the vorticity generated by wave-breaking the vertical pro�le of the velocity is not self-similar: it
depends on both wave propagation and transformation, while models based on the classical approach
of irrotational �ow present a self-similar vertical pro�le. It is to be mentioned that very recently
Rego et al. (2001) used the same approach for simulating waves over �ows with arbitrary vorticity,
thus extending in some sense the work of Veeramony and Svendsen (1999) which focussed on wave-
breaking generated vorticity.

In this section the �nal expression for the velocity u′ employed in classical weakly nonlinear-
dispersive Boussinesq models is reported. This expression can be also recovered from that presented
by Veeramony and Svendsen (1999) by neglecting the terms involving vorticity.u′ can be expressed
as a function of quantities measured at di�erent levels in the water column or in terms of averaged or
integrated quantities. For example either the horizontal velocity at the bottomu′0, or the velocity at
a speci�c level zα, or the depth-integrated velocityu∗ = 1

(h∗+δζ∗)
∫ δζ
−h∗ u′∗ dz can be used as variable.

A widely used expression relates u′∗ to u∗ and reads

u′∗ = u∗ + µ2

(
∆1

2
− z∗

)
(h∗u∗)x∗x∗ +

µ2

2

(
∆2

3
− z∗2

)
u∗x∗x∗ (2.1.16)

where ∆1 = δζ∗ − h∗ and ∆2 = δ2ζ∗2 − δζ∗h∗ + h∗2. Equation (2.1.16) represents the classical
parabolic velocity pro�le of BTE. It is evident that if wave dispersiveness is neglected (i.e. µ =
O (0)), the horizontal velocity is constant over the depth and, of course, is equal to the depth-
integrated velocity.

2.1.6 The �nal equations
The approximate expression for the velocity (2.1.16) can be used to evaluate the integrals appearing
in the non-dimensional form of (2.1.7) and in (2.1.15). During the algebraic procedure terms of
high order in δ and µ appear. Therefore a speci�ed degree of accuracy is chosen and only terms
consistent with this accuracy are retained. Nevertheless the depth-integrated continuity equation
is not a�ected by the truncation in µ and δ. This equation is, under the hypotesis summarized in
section 2.1.2, exact and its �nal form reads

ζ∗t∗ + [(h∗ + ζ∗)u∗]x∗ = 0. (2.1.17)

Let us now discuss the in�uence of the scaling parameters on the �nal depth-integrated
momentum equations. If the �nal equations are to be used to simulate nonlinear waves in very
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shallow water, the e�ect of frequency dispersion is neglected, since in these conditions the order of
magnitude of the scaling parameters is

δ = O (1) , µ2 = O (0) . (2.1.18)

The �nal form of the depth-integrated momentum equation, if all terms of orderµ2 and smaller are
neglected, reads

u∗t∗ + δu∗u∗x∗ + ζ∗x∗ = 0 (2.1.19)
which is the well known momentum equation of the NSWE.

Extending the NSWE to the intermediate depths involves retaining terms of higher order inµ.
Weakly nonlinear waves in intermediate water can be simulated by chosing the following order of
magnitude of the parameters:

δ

µ2
= O (1) , µ2 << O (1) . (2.1.20)

This choice leads to the classic weakly dispersive, weakly nonlinear BTE momentum equations that
read

u∗t∗ + δu∗u∗x∗ + ζ∗x∗ + µ2

[
−1

3
h∗2u∗x∗x∗t∗ −

1
2
h∗h∗x∗x∗u∗t∗ − h∗h∗x∗u∗x∗t∗

]
= 0. (2.1.21)

The NSWE (2.1.19) and the BTE (2.1.21) are the most widely used nonlinear depth-integrated
models for the nearshore hydrodynamics. Each of these equations presents some advantages and
some drawbacks, which we discuss in this �nal part of the section.

Any model application, aimed at studying nearshore waves and currents, consists of simulating
wave transformations from the o�shore to the inshore, where knowledge of �ow conditions is usually
required. Input wave conditions are usually known, with a certain degree of accuracy, in deep water,
where the in�uence of the bottom is small. This information can be obtained for example by buoys,
hindcasting or forecasting models, etc. Neverthless, waves in very deep water are characterized by
high values of the dispersiveness parameterµ, and the assumptions (2.1.18) and (2.1.20) are clearly
in contrast with this feature of the waves to be simulated. It is therefore clear that a very important
limitation characterizes the application of the model discussed in this section: the o�shore boundary
of the computational domain is to be carefully selected in order to impose, as boundary conditions,
waves consistent with the assumptions that are at the basis of the models.

In other words these models are shallow water models and can be applied in regions where waves
are strongly in�uenced by the bottom (shallow and intermediate areas). Wave transformation from
o�shore areas to the intermediate or shallow areas, where accurate modelling can be performed
with NSWE and BTE, are to be taken into account using alternative techniques. NSWE su�er
greatly from this limitation if compared to BTE. Due to their non-dispersive nature, NSWE cannot
propagate waves of constant form. Being purely amplitude-dispersive, NSWE simulate waveforms
that evolve in time, since the higher parts of the waves propagates faster than the lowers, inducing
to steepening of the wave pro�le. This leads to vertical wave fronts which, in some sense, model
the physical process of wave-breaking. The problem with NSWE is that the steepening process
is only partially in�uenced by the bottom: also very long waves, propagating over a horizontal
bottom would unrealistically break after a few wavelengths. Indeed it is to be noted that once the
shoreward part of the wave pro�le has become vertical, if a suitable numerical method is employed
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to solve the equations, a bore-like solution would be obtained, simulating the dissipative e�ects of
wave-breaking. Furthermore NSWE are usually conveniently solved by means of numerical methods
that allow a very e�ective treatment of the swash zone. It can be concluded that NSWE can be
applied with good results in the surf and in the swash zone, but they can not accurately predict
where the waves start breaking. Moreover wave-breaking e�ects are simulated by means of a purely
numerical treatment and no representation of the physical phenomena is generally incorporated into
the equations.

On the contrary BTE can accurately simulate wave propagation before wave-breaking occurs: in
the last ten years great e�orts have been spent in order to extend to intermediate and deep waters
the BTE (Madsen and Schä�er 1998). Very recently Madsen et al. (2001) presented a very advanced
form of the equations that allows an accurate representation of wave propagation from almost deep
waters to the surf zone. In general these new form of BTE are achieved relaxing the assumptions
(2.1.20) and retaining high order terms both inµ and δ. Wave-breaking in BTE models is simulated
by introducing additional terms in the equations, which appear when the wave front has reached a
certain slope. BTE, if compared to NSWE are a very complete and advanced model, but mainly two
drawbacks limit their application. First the computational times needed to solve the equations are
very large if compared to those required for solving the NSWE. By retaining high order terms, very
complicated governing equations are obtained. These are characterized by high order derivatives of
the dependent variables which, in order to be evaluated numerically, need very �ne space and time
grids. Furthermore the �ow in the swash zone is represented using ad hoc techniques (see chapter
3), which limit the accuracy of the results.

2.2 A numerical model for solving the BTE
This section is dedicated to a brief description of the numerical model for solving the BTE that
was coded in order to verify the boundary conditions described in chapter 3 and the wave-breaking
criterion presented in chapter 4. We have chosen to adopt and code the model derived by Veeramony
and Svendsen (1999), because of its e�ectiveness in representing nearshore �ows.

The basic model equations are both the mass conservation equation

ζt + [(h + ζ) u]x = 0 (2.2.22)

and the momentum conservation equation

ut + uux + gζx +
(B − 1

3

)
h2uxxt − 1

2hhxxut − hhxuxt + Bgh2ζxxx − 1
3h2uuxxx

+1
3h2uxuxx − 3

2hhxxuux − 1
2hhxxxu2 − hhxuuxx + Bh2 (uux)xx − 1

3hζuxuxx

−1
3huxx (ζu)x + h

(
ζu2

x

)
x
− 2

3h (ζuuxx)x − ζxhxxu2 − ζhxuuxx − 1
2ζhxxxu2

−3
2ζhxxuux − ζxhxuux − 1

3ζ2uuxxx − ζζxuuxx + ζζxu2
x + 1

3ζ2uxuxx − hζxutx

−2
3hζ (ut)xx + ζhx (ut)x − hxζxut − 1

2ζhxxut + 1
6ζ2 (ut)xx − 1

2

(
ζ2 (ut)x

)
x

= 0

(2.2.23)

with improved dispersion characteristics (hereB = − 1
15). Good dispersion properties, which make

this model suitable for accurate �ow predictions from the `intermediate' to the `shallow waters',
have been obtained by retaining terms of order up toO(δ3µ2) inclusive.

Notice that, although the original form of equation (2.2.23) includes additional terms which
model energy dissipations caused by wave breaking, these are here neglected for simplicity. They
will be re-introduced in chapter 4. A second note of caution is highlighted in section 2.3 and for the
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reason discussed there we coded the equivalent (but written in terms of the water depthd instead of
the surface elevation ζ) momentum equation 2.3.53 which is reported here for convenience (notice
that here B has been set to zero for simplicity sake):

ut + uux + gζx − 1
3d2uxxt + 1

2dhxxut + dhxuxt

−1
3d2uuxxx − 1

3d2uxuxx + 3
2dhxxuux + 1

2dhxxxu2 + dhxuuxx + dζxuxt + hxζxut

−dζxuuxx − dζxu2
x + ζxhxxu2 + ζxhxuux = 0.

(2.2.24)

The governing equations (2.2.22) and (2.2.24) are solved adopting a 4th-order Adam-Bashfort-
Moulton scheme (ABM hereinafter) to step the model forward in time and a �ve-point �nite
di�erence scheme to evaluate the spatial derivatives. The resulting model scheme is widely adopted
with good results to solve the Boussinesq equations (see for example Wei et al. 1995) and the
short-wave-averaged NSWE (Sancho and Svendsen 1997).

In order to apply the ABM scheme the governing equations are written in a more convenient
way:

ζt = E, (2.2.25)
υt = F (2.2.26)

where
E = − [(h + ζ) u]x , (2.2.27)

F = uux + gζx

−1
3d2uuxxx − 1

3d2uxuxx + 3
2dhxxuux + 1

2dhxxxu2 + dhxuuxx + dζxuxt + hxζxut

−dζxuuxx − dζxu2
x + ζxhxxu2 + ζxhxuux = 0

(2.2.28)

and
υ =

1
3
d2uxx − 1

2
dhxxu− dhxux. (2.2.29)

The independent variables x and t are discretized over an unstaggered grid by de�ningxi = (i −
1)∆x, (i = 1, 2, ..., nx − 1, N) and tn = (n − 1)∆t, (n = 1, 2, ..., T − 1, T ), where N is the number
of nodes of the computational domain andT is the number of time-steps.

If initial conditions are speci�ed, i.e. if the values ofζ and u at the time levels n, n−1, n−2 are
available, the solution at the subsequent time leveln+1 can be obtained by means of the following
procedure:

1. evaluation of the right-hand sides of equations (2.2.25) and (2.2.26) at the time leveln, n− 1,
n− 2;

2. integration in time of equations (2.2.25) and (2.2.26) by means of the predictor stage of the
ABM scheme;

3. evaluation of right-hand sides of equations (2.2.25) and (2.2.26) at the time leveln + 1;

4. integration in time of equations (2.2.25) and (2.2.26) by means of the corrector stage of the
ABM scheme;

5. evaluation of un+1
i at all interior grid points by means of the solution of the tridiagonal system

resulting from the discretizing of (2.2.29).
Steps from 4 to 5 are iterated in order to improve the accuracy of the convergence.
The ABM time stepping scheme and the �nite-di�erences expressions for the spatial derivatives

are detailed in the following sections.
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2.2.1 The Adam-Bashfort-Moulton time stepping scheme
Once the right-hand sides of equations (2.2.25) and (2.2.26) are computed at time-stepsn, n−1 and
n− 2, estimates of quantities ζ and υ at the following time-step n + 1 can be obtained by applying
the ABM scheme which at the predictor stage reads:

ζn+1
i = ζn

i +
∆t

12
[
23En

i − 16En−1
i + 5En−2

i

]
, (2.2.30)

υn+1
i = υn

i +
∆t

12
[
23Fn

i − 16Fn−1
i + 5Fn−2

i

]
. (2.2.31)

All values at the right hand sides of equations (2.2.30) and (2.2.31) are known from previous
calculations. The values of ζn+1

i are thus straightforward to obtain. The evaluation of horizontal
velocities, u, at the new time level, however, requires solution of the tridiagonal system resulting
from the discretizing of (2.2.29) as detailed in section 2.2.4.

Once ζn+1
i and un+1

i are estimated, the quantities E and F can be evaluated at the time-step
n + 1 and the corrector stage of the ABM scheme can be applied:

ζn+1
i = ζn

i +
∆t

24
[
9En+1

i + 19En
i − 5En−1

i + En−2
i

]
, (2.2.32)

υn+1
i = υn

i +
∆t

24
[
9Fn+1

i + 19Fn
i − 5Fn−1

i + Fn−2
i

]
. (2.2.33)

The time-stepping scheme is accurate up toO(∆t)3 at the predictor stage and up toO(∆t)4 at
the corrector stage. As introduced before, by applying repeatidly the corrector stage, very accurate
estimates of the dependent variable can be obtained. More speci�cally, the corrector step is iterated
until the error between two successive results reaches a required limit. The error is computed for
each of the two dependent variables ζ and u and is de�ned as:

∆f =

i=N∑

i=1

|f ′i − fi|

i=N∑

i=1

|f ′i |
(2.2.34)

where f = {ζ, u}, while f ′, and f respectively denote the solution at successive iterations.

2.2.2 Time di�erencing
The quantity F , de�ned by (2.2.28) includes time derivatives of the dependent variableu. These
derivatives are evaluated employing time-di�erencing expressions consistent with the accuracy of the
selected ABM scheme. As far as the predictor stage is concerned, we apply the following expressions

(ut)n
i =

1
2∆t

[
3un

i − 4un−1
i + un−2

i

]
+ O(∆t2), (2.2.35)

(ut)n−1
i =

1
2∆t

[
un

i − un−2
i

]
+ O(∆t2), (2.2.36)
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(ut)n−2
i = − 1

2∆t

[
3un

i − 4un−1
i + un−2

i

]
+ O(∆t2). (2.2.37)

For the corrector stage, we evaluate ut according to

(ut)n+1
i =

1
6∆t

[
11un+1

i − 18un
i + 9un−1

i − 2un−2
i

]
+ O(∆t2), (2.2.38)

(ut)n
i =

1
6∆t

[
2un+1

i − 3un
i + 6un−1

i − un−2
i

]
+ O(∆t2), (2.2.39)

(ut)n−1
i = − 1

6∆t

[
2un+1

i − 3un
i + 6un−1

i − un−2
i

]
+ O(∆t2), (2.2.40)

(ut)n−2
i = − 1

6∆t

[
11un+1

i − 18un
i + 9un−1

i − 2un−2
i

]
+ O(∆t2). (2.2.41)

Notice that the expressions reported above use the value ofu at the time level n + 1; this implies
that during the iterative application of the corrector stage, the value ofut, and therefore F at the
four time levels has to be computed repeatidily. In order to speed up the computation we found
useful storing at each time step the terms inF not containing time derivatives of u and adding to
them the terms containing ut at each iteration of the corrector expression.

2.2.3 Spatial di�erencing
The spatial derivatives appearing inE and F are computed by means of high order �nite di�erence
schemes in order to obtain estimates with truncation errors lower than the highest order dispersive
terms in the governing equations. In the interior region of the domain central schemes can be
applied while one-sided schemes are used to evaluate derivatives at the boundaries.

These scheme reads, for �rst order derivatives with respect tox,

(wx)1 =
1

12∆x
(−25w1 + 48w2 − 36w3 + 16w4 − 3w5) , (2.2.42)

(wx)2 =
1

12∆x
(−3w1 − 10w2 + 18w3 − 6w4 + w5) , (2.2.43)

(wx)i = 1
12∆x [8 (wi+1 − wi−1)− (wi+2 − wi−2)] (i = 3, 4, ..., N − 2) , (2.2.44)

(wx)N−1 =
1

12∆x
(3wN + 10wN−1 − 18N−2 + 6wN−3 − wN−4) , (2.2.45)

(wx)N = − 1
12∆x

(25wN − 48wN−1 + 36N−2 − 16wN−3 + 3wN−4) (2.2.46)

where w is the variable to be di�erenced.
For second order derivatives, a three-point di�erence schemes is used:

(wxx)i =
wi+1 − 2wi + wi−1

(∆x)2
, (i = 2, 3, 4, ..., N − 1) (2.2.47)
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2.2.4 Evaluation of u from the computed υ

Once the value of υn+1
i has been determined at each grid node (i = 2, 3, ..., N−2, N−1), a technique

to solve the ordinary di�erential equation (2.2.29) is needed to compute the water velocity.
Equation (2.2.29) can be discretized using a three-point �nite di�erence scheme for the second

derivative of u and a simple two-point central �nite di�erence scheme for the �rst derivatives to
give:

υn+1
i = Aiu

n+1
i−1 + Biu

n+1
i + Ciu

n+1
i+1 for i = 2, 3, ..., N − 2, N − 1. (2.2.48)

In which A,B, C are de�ned by:

Ai = − d2
i

3∆x2
+

di(hx)i

2∆x
,

Bi =
[
1− 1

2
di(hxx)i

]
+

2d2
i

3∆x2
,

Ci = − d2
i

3∆x2
− di(hx)i

2∆x
.

(2.2.49)

These N − 2 equations form a tridiagonal system that can be solved to obtainun+1
i at all the grid

points if un+1
1 and un+1

N are speci�ed. It is to be stressed that the velocity at the boundaries at the
time step n + 1 are requested by the numerical scheme and are the boundary conditions needed to
solve the governing system of partial di�erential equations.

2.3 On using the Boussinesq equations in the swash zone: a note
of caution

The behaviour of BTE models at the shoreward boundary of the domain of interest i.e. in the swash
zone is discussed in this section. In order to illustrate problems and proposed solutions we make use
of the high-order BTE model given by equations (2.2.22) and (2.2.23) (Veeramony and Svendsen
1999). As already mentioned we set to zero the parameterB and do not include additional terms
which model energy dissipations caused by wave breaking.

In our �rsts attempts of using these equations from intermediate waters up to the shoreline
(see chapter 3) we run into numerical troubles when reaching the run-up region i.e. x > 0. These
problems were essentially related to numerical instabilities due to the uncontrolled growth of the
dispersive contributions (i.e. O(µ2)−terms). Such contributions govern the three-points central
di�erence scheme used to solve the tridiagonal system obtained when adopting the numerical scheme
described in the previous section, to advance the solution at the i−th node from the instant n to
the instant n + 1 (see section 2.2.4 for more details):

υn+1
i = Ai−1u

n+1
i−1 + Biu

n+1
i + Ai+1u

n+1
i+1 (2.3.50)

where, if the original formulation (2.2.23) is used instead of (2.2.24)

Ai = − h2
i

3∆x2
+

hi(hx)i

2∆x
,

Bi =
[
1− 1

2
hi(hxx)i

]
+

2h2
i

3∆x2
,

Ci = − h2
i

3∆x2
− hi(hx)i

2∆x

(2.3.51)
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are the equivalents of (2.2.49).
Since all the three coe�cients containhi, the solution of this tridiagonal system depends on the

size of hi which is shoreward decreasing until the still shoreline is reached. Then, forx > 0 i.e.
in the run-up region, hi grows to reach a maximum value at the actual shoreline. This spurious
behavior (we would expect pure dispersion to be zero in very shallow waters) makes the solution
unstable. It is correct mentioning we were not the �rst to encounter di�culties in using BTE models
in the swash. For example, Madsen et al. (1997) report: �However, to make this technique (i.e. the
`slot technique' for moving the shoreline) operational in connection with Boussinesq type models a
couple of problems call for special attention.�. They, however, took the following very pragmatic
view: �Firstly the Boussinesq terms are switched o� at the still water shoreline, where their relative
importance is extremely small anyway. Hence in this region the equations simplify to the nonlinear
shallow water equations...�.

On the other hand, we tried to solve the same problem in a di�erent way i.e. forcing the
dispersive terms which appear in the tridiagonal system of (2.3.50) to identically vanish at the
shoreline. It is therefore obvious that the reference-dependent variableh had to be replaced by
the more physically important total water depthd. With this aim in mind we re-wrote the model
equations in the following slightly di�erent but equivalent form:

ζt + [du]x = 0, (2.3.52)
ut +uux+gζx−

[
1
3
d2uxxt +

1
2
dhxxut + dhxuxt

]

︸ ︷︷ ︸
(I)

−
[
1
3
d2uuxxx− 1

3
d2uxuxx+

3
2
dhxxuux+

1
2
dhxxxu2+dhxuuxx+dζxuxt+hxζxut

]

︸ ︷︷ ︸
(II)

− [
dζxuuxx − dζxu2

x + ζxhxxu2 + ζxhxuux

]
︸ ︷︷ ︸

(III)

= 0. (2.3.53)

With this choice the coe�cientsAi and Ci in (2.3.51) of the tridiagonal system (2.3.50), which for
these new equations are given by (2.2.49), identically vanish at the actual shoreline hence allowing
for a much more stable numerical solution while the coe�cientsBi reduces to unity. Some very
small spurious oscillations were still detectable due to the non-zero high-order dispersive-nonlinear
terms. In order to better illustrate the role of dispersive and dispersive-nonlinear contributions near
the shoreline we have performed a simple analysis which is presented in the next section.

2.3.1 Analysis and Discussion
The adopted BTE model contains contributions of orderO(µ2), O(δµ2), O(δ2µ2) and O(δ3µ2). In
order to illustrate the role of each term near the shoreline we have computed such contributions
on the basis of a reference solution i.e. the only available analytical solution for periodic waves in
the swash zone. This is the solution of (Carrier and Greenspan 1958). With this solution we do
not have to rely on numerical computations of each contribution of equations governing equations.
Such computations would always carry with them the uncertainties due to numerical errors and
instabilities which could obscure the results. Rather, the Carrier and Greenspan analytical solution
allows to directly and reliably estimate contributions to BTE equations under investigation.
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We have performed a few computations but, to highlight what happens in the swash zone, we
choose to show only that concerning the motion of a wave of dimensionless amplitude (hereafter
stars characterize dimensionless quantities)a∗0 = 0.5 and dimensionless frequencyω∗ = 1. This non-
breaking wave allows for a su�ciently wide swash zone the width of which being ofa∗0ω∗/2 = 0.25
(see Brocchini and Peregrine 1996).

Before discussing the results we want to clarify that, due to the dimensionless de�nition of the
total water depth:

d∗ = h∗ + δζ∗ (2.3.54)
the dimensionless form of the �rst bracket of equation (2.3.53), i.e. that denoted by(I), not only
contains O(µ2) terms but also O(δµ2). Similarly, the second bracket [i.e. (II)] of the same equation
contains both O(δµ2) and O(δ2µ2) terms, while the third [i.e. (III)] contains both O(δ2µ2) and
O(δ3µ2) contributions. Notwithstanding this mixture of contributions we found it useful to compare
the spatial distribution of the terms of the three brackets of equation (2.3.53) respectively with that
of the O(µ2), O(δµ2) and O(δ2µ2) + O(δ3µ2) terms of equation (2.2.23). These are reported, with
the same order, in �gures 2.3, 2.4 and 2.5, while �gure 2.2 shows, for reference, the free surface
position (i.e. the phase of the wave) and the sloping beach. The wave run-up/run-down motion
is illustrated for the four following dimensionless times t∗ = 0, π/5, 3π/5, 4π/5 on the panels (from
left to right) of each �gure. In each panel of �gures 2.3, 2.4 and 2.5, the contributions coming from
equation (2.3.53) are plotted with solid lines while those relative to equation (2.2.23) with dashed
lines.

Notice that the comparison of the mixed-ordered brackets with the di�erent order contributions
to (2.2.23) is even more reasonable when considering thatδ and µ are built with scales (still water
depth, wave amplitude and wavelength) of the �ow in the o�shore region of the domain of interest.
Hence, they are typical of shallow but �nite water depths and are not suitable for describing the
order of magnitude of the various contributions in the swash zone which is characterized by very
thin sheets of water. To be more precise this inadequacy starts from the region in whichh is a small
contribution to d.

At a �rst glance (see �gure 2.3) it is evident how the contributions of bracket(I) of equation
(2.3.53) are almost equivalent to the O(µ2) terms of equation (2.2.23). The largest discrepancies
occur inside the swash zone. At the shoreline theO(µ2) terms can be positive or negative depending
on run-up/run-down phase. On the contrary the(I) contribution is always zero at the shoreline. As
for the high-order contributions (see �gures 2.4 and 2.5) the redistribution operated to get equation
(2.3.53) is such that contributions (II) and (III) are characterized by smaller oscillations than
the O(δµ2) and O(δ2µ2) + O(δ3µ2) terms. In order to fully illustrate the behaviour of these terms
their spatial distribution has been shown over a larger distance from the shoreline (about one and
a half wavelengths). It is clear that dispersive-nonlinear contributions are increasingly important
while approaching the shoreline. Hence, in principle, they cannot be neglected. In particular the
highest order term of �gure 2.5 are almost zero at a distance of one wavelength from the undisturbed
shoreline and abruptly grow to reach their maximum in the swash zone. This behaviour in the swash
zone is such to require much care when computing dispersive-nonlinear terms up to the shoreline:
high-order spatial derivative may easily introduce numerical instabilities and suitable techniques
must be adopted to handle them (see chapter 3).

In summary we have shown one signi�cant practical result: usingd instead of h in the equations
of BTE models leads to re-grouping terms in the form of equation (2.3.53). This is equivalent to
equation (2.2.23) but better tractable from a numerical point of view. Notice that, though based
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on a speci�c BTE model, most of the observations we have made are valid for a large number of
high-order BTE models (also for the fully nonlinear models like those of Wei et al. 1995 and Madsen
and Schä�er 1998). In fact all of them have to face the problem of treating high-order terms in the
run-up region (i.e. for x > 0). Moreover, most of the available and currently used BTE models are
numerically solved by the ABM scheme mentioned above (e.g. Wei et al. 1995; Skotner and Apelt
1999; Veeramony and Svendsen 2000 and others) which carries with it the problem of dealing with
the coe�cients of the tridiagonal system (2.3.50) forx > 0. One second result concerns qunti�cation
and illustration of the importance of the various dispersive-nonlinear contributions in very shallow
waters on the basis of an analytical model solution.
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Figure 2.2: Free surface elevation plotted at di�erent nondimensional timest∗ = 0, π/5, 3π/5, 4π/5
versus the x−coordinate. The straight line represents the sloping beach.
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Figure 2.3: For the same times of �gure 2.2 contributions ofO(µ2) to equation (2.2.23) are plotted
with dashed lines versus the x−coordinate. Superposed with a solid line are the (I) contributions
to equation (2.3.53).
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Figure 2.4: For the same times of �gure 2.2 contributions ofO(δµ2) to equation (2.2.23) are plotted
with dashed lines versus the x−coordinate. Superposed with a solid line are the (II) contributions
to equation (2.3.53).
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Figure 2.5: For the same times of �gure 2.2 contributions ofO(δ2µ2)+O(δ3µ2) to equation (2.2.23)
are plotted with dashed lines versus the x−coordinate. Superposed with a solid line are the (III)
contributions to equation (2.3.53).
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Chapter 3

A new shoreline boundary condition for
Boussinesq-type models

3.1 Introduction
As already mentioned the most favoured approximate model equations for studying nearshore
hydrodynamics are both the NSWE and the many available BTE which all stem from the work
of Peregrine (1967).

BTE became very popular when it was proved they could model fairly well breaking waves
(Brocchini et al. 1992; Schä�er et al. 1993). Subsequently, in order to make such equations more
suitable for coastal engineering practice, dispersive characteristics were greatly improved extending
their seaward limit to reach the so-called `intermediate depths' (see Madsen and Schä�er 1998 and
references therein).

Notwithstanding these important improvements, which recently made BTE models `the models'
for coastal engineering, �ow solvers based on those equations su�er of a major problem. This
is related to the mathematical/numerical treatment of both the swash motions and the delicate
shoreline boundary conditions (Brocchini and Peregrine 1996).

To our knowledge no available solver based on BTE correctly models the shoreline motions and
often ad-hoc arti�cial techniques are used to model wave run-up and run-down (see for example the
`slot technique' used by Madsen et al. 1997). The quest for good shoreline boundary conditions
(SBCs hereinafter) to be implemented in BTE models is currently being pushed in a number of
di�erent directions. Recently new SBCs are being developed (Özkan-Haller and Kirby 1997) with
the use of coordinate transformations which map the irregular shoreline to a straight line. Although
a few examples are given which testify good performances some doubts can be reasonably raised
on the e�ectiveness of such techniques in the case of heavily breaking waves which require strongly
distorted transformations. This is more true for breaking waves which interact in the swash zone
(e.g. backwash bores) as they generate cusps-like indentations at the shoreline which seem hardly
representable by a smooth coordinate transformation. No arti�cial techniques are required when
using the NSWE as model equations. NSWE are typically solved by means of the method of
characteristics and the shoreline is a characteristic itself!

It is now becoming clear that better modelling is required of the SBCs employed in BTE models.
To this purpose a number of methods can be applied a short list of which is here given as reference.
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BTE-NSWE matching

This method, currently applied by some researchers, does not directly address the real problems
concerning the de�nition of suitable SBCs. Rather, a pragmatic view is taken according to which
purely dispersive BTE (i.e. with no extra nonlinear contributions, see section 2.3 for a discussion)
reduce to NSWE in very shallow waters. Consequently a matching is imposed (depending on the
local Ursell number) between BTE and NSWE solvers (Giarrusso 1998; Dodd and Giarrusso 2001).
With this technique swash zone motions are always modelled by the NSWE module which properly
handles the motion of the shoreline.

Extension of the NSWE to include dispersion

It is based on the view that NSWE are most suitable for modelling the swash zone motions
and track the shoreline position. In order to extend the range of validity of the NSWE to the
`intermediate depths' suitable nonlinear-dispersive contributions can be included either into the
�ux term Fx or into the source term S of the model equation:

Ut + Fx = S (3.1.1)

used to cast the 1DH-NSWE in a typical conservation form to be solved for the variableU (Brocchini
et al. 2001).

Characteristic-type SBCs for BTE

A third approach is here followed which is believed to both provide a close description of
what actually happens at the point (line) where the water meets the beach face and to be easily
implemented in any type of numerical models based on BTE. Analysis is underway to de�ne the
most suitable form of the SBCs (1DH �ow propagation):

dxs

dt
= us, ds = 0 (3.1.2)

[xs being the shoreline position, ds and us respectively the water depth and the �ow speed at the
shore].

This chapter is organized as follows. A description of the problem to be solved and of the
schematization adopted is given in section 3.2. A detailed analysis of the celerity at which the
shoreline moves is given in section 3.3, where the `shoreline Riemann problem' is introduced. The
description and the implementation of the new shoreline boundary conditions in the model described
in section 2.2 is detailed in section 3.4. Section 2.2 illustrates the speci�c BTE model which has been
developed in order to evaluate the performance of the new SBCs. In section 3.5 the performances of
the new SBCs and their implementation is veri�ed by means of the comparison against well known
analytical solutions. Some concluding remarks are given in the �nal section 3.6 along with a short
description of ongoing research on this topic.
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3.2 Problem statement
Our objective here is to derive a shoreline boundary condition suitable to be implemented in most
commonly used numerical schemes for solving the Boussinesq type equations, i.e. �nite di�erences
schemes, working on �xed computational grids. In order to proceed a careful de�nition of the
problem to be solved is needed. With reference to Figure 3.1, it can be noted that in the swash zone
the water depth gradually decreases up to a point where it becomes zero. This point is commonly
referred to as the shoreline. Notice that in the sketch reported in the �gure it is assumed that a
very smooth transition in the solution, i.e. in water depth and velocity, veri�es. This is not the
case when a bore is propagating on the beach or when a strong interaction between two waves, one
running-up and one running-down the slope, occurs. Nevertheless the essence of the problem is not
altered: it can always be recognized that there is a point where the transition between wet and dry
conditions occurs: that point is the shoreline.

x

1

ζ

wet

shoreline

dry

N NTOT

Figure 3.1: The computational domain.

If we look at the problem from a numerical point of view, a discrete representation of the
physical conditions described above results. The solution, i.e. the value of both water depth and
velocity, can be known only at the computational points and it is clear that an exact de�nition of
the shoreline is no longer available. The shoreline is hence somewhere between the last wet node
(N in the Figure) and the �rst dry node (N + 1). In this work we assumed that if a small spacing
between the nodes ∆x is adopted, the shoreline can reasonably be considered to lay in the middle
of the region [xN , xN+1], where xN and xN+1 are the abscissa of the two nodesN and N + 1. The
position of the shoreline xs is hence de�ned as xs = xN + ∆x

2 .
By taking this view the computational domain is divided into two sub-domains as depicted in

Figure 3.1. From node 1 to node N the nodes are wet and the governing equations are solved by
means of a �nite di�erences scheme as detailed in section 2.2. From nodeN + 1 to node Ntot the
nodes are dry. At the �rst and last wet nodes (i.e. 1 and N), suitable boundary conditions are to
be speci�ed in order to solve the problem (see section 2.2.4). Furthermore, by changing the value
of N , i.e. by inundating and drying the nodes, the movements of the shoreline can be simulated.

It is now becoming clear that any swash zone modelling based on the conceptual scheme
described above has to deal with two problems. The �rst one is the speci�cation of water depth
and velocity at the last wet node. These two values are the boundary conditions needed to solve

DSIC - Università degli Studi di Roma Tre - Rome, Italy 29



DELOS PROJECT

the system of partial di�erential equations. The second problem deals with the simulation of the
shoreline movements: a technique is needed capable of deciding whether the wet region of the
computational domain is to be enlarged (thus increasing the value ofN simulating run-up) or
restricted (decreasing N simulating run-down).

3.3 The shoreline Riemann problem
Di�erent approaches can be used to model the motion of the shoreline on a beach. Until recently
one of the most used was the �thin �lm approach" in which the whole computational domain is
considered as �wet" but the thickness of the water is de�ned as �very small" in the region of the
beach not reached by the motion of the waves. However, it can be demonstrated that such an
approach leads both to a theoretically wrong solution and to great numerical inaccuracies. Hence
we prefer to de�ne and solve the motion of a genuine wet-dry interface.

In this section the `shoreline Riemann problem' is introduced with the aim of investigating the
celerity at which, according to the Boussinesq equation, the shoreline moves. As detailed in the
previous section at the shoreline a transition occurs between a �nite and a null value of the water
depth. Hence a discontinuity of the solution veri�es. A suitable theoretical approach for dealing
with such a discontinuity originates from the method of the characteristics and is based on the
solution of the so called Riemann problem (Toro 1997). In the following the conservative form of
BTE, the generic and the shoreline Riemann problems are introduced. Finally the solution in the
BTE framework is derived.

Let us �rst of all recognize that for small enough water depth most dispersive-nonlinear terms
D which characterize BTE from NSWE become negligible. Hence near the shoreline we can write
the 1DH version of any BTEs as:

dt + (ud)x = 0 (3.3.3a)
ut + uux + gdx = ghx − τb + D, (3.3.3b)

where d = h + ζ (see �gure 3.2) is the total water depth, u is a depth-averaged velocity, τb is the
seabed friction and subscripts are used to represent partial derivatives.

x

z

d(x, t) h(x)

ζ(x, t)

Figure 3.2: Sketch of typical problem geometry

These can be cast in suitable conservative vectorial form which is typically used in shock-
capturing numerical solvers:

Ut + F(U)x = S(U) (3.3.4)
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U being the vector of the unknowns,F the �ux term and S the source term

U =
[

d
ud

]
, F(U) =

[
ud

u2d + gd2

2

]
, S(U) =

[
0

gdhx − dτb + dD

]
(3.3.5)

which also includes all dispersive-nonlinear contributionsD which characterize each speci�c BTE.
The above mentioned Riemann problem is de�ned by equations (3.3.4), (3.3.5) and constant

initial conditions (see �gure 3.3a) such that:

U(x, 0) = U0(x) =
{

UL if x < 0
UR if x > 0.

(3.3.6)

A very speci�c Riemann problem is the one in which the right constant state is dry. This
helps to formulate and solve the transition which occurs at the shoreline (see �gure 3.3b). A similar
description was given by Stoker (1957) of the `retreating piston' or `retreating wave paddle' problem.
We call the speci�c Riemann problem of �gure 3.3b as the `shoreline Riemann problem'.

U0(x) U0(x)

UL UL

UR

UR

x x(a) (b)

Figure 3.3: The Riemann problem. Illustration of the initial data for: (a) a generic Riemann
problem, (b) the `shoreline Riemann problem'.

In �gure 3.4 the solution structure of a typical Riemann problem is shown. This is the well
known `dam break on a wet bed'. On the upper panel the initial con�guration (timet = 0) of the
free surface is shown; it can be noted that an abrupt variation of the water depth occurs atx = x0.
The velocity of the �uid is in this case equal to zero. At a generic timet† > 0 from the point x = x0

two wave families emanate (see lower panel). For the speci�c case at hand the left wave family is a
rarefaction wave and the right one is a shock wave.

Rarefaction waves, also indicated as depressions, connect two data states through a smooth
transition. At any �xed time all �ow quantities vary continuously across the wave. As depicted in
the �gure the wave has a fan like structure, centered at the origin. Rarefaction waves propagate
in the deep water region (left in the �gure) reducing the water depth. Shock waves, also known
as bores, connect, through a single jump discontinuity, two constant data states. For the case
reported in �gure the shock wave propagates in the shallow water region (right) rising the water
depth abruptly.

A simple, intuitive method for determining what kind of waves (weather rarefaction or shock)
emanates from the original discontinuity is given here below, provided that an exact description
of this mathematical problem can be found in a number of books (see for example Toro 1997).
Given that the governing system of equations is hyperbolic, it can always be recognized that some
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information on �uid motion travels along the characteristics curves. Two characteristics originate
from each point in the x− t space, one is termed positive or advancing characteristic (C+) and one
is termed negative or receding (C−). In very shallow water the characteristic curvesC− and C+ of
(3.3.4) are:

dx

dt
= λ1 = u− c (C−),

dx

dt
= λ2 = u + c (C+) (3.3.7)

where c =
√

gd.
Subcritical �ow states are characterized by the fact that the signs ofλ1 and λ2 are discordant.

The contrary occurs for supercritical �ows, where the sign ofλ1 and λ2 is equal. Now, compare the
magnitude of the quantities λL

1 and λR
1 , where the superscripts indicate if the quantity refers to left

(L) or right (R) states. It can be stated that left rarefaction waves are generated ifλL
1 < λR

1 and
that left shock waves are generated if λL

1 > λR
1 . Furthermore right rarefaction waves are generated

if λL
2 < λR

2 and right shock waves are generated if λL
2 > λR

2 .
In the typical case shown in �gure 3.4 the negative characteristics (notice that in this case

λL
1 < λR

1 ) originating from the left and from the right of the initial discontinuity, bound the leftfan
region. On the contrary the positive characteristics (λL

2 > λR
2 ) collapse into a right shock waves.

In principle there are four possible wave patterns for a generic Riemann problem. These are
depicted in the �gure 3.5 where thick lines represent shock waves and the fans represent rarefactions.
Case (a) is characterized by a left rarefaction wave and a right shock wave, case (b) by a left shock
and a right rarefaction, case (c) by a left and right rarefaction and �nally case (d) by left and right
shock waves. The waves that originates from the initial discontinuity separate three constant states,
indicated in �gure 3.5 by UL, U∗ and UR. The left (UL) and right (UR) states are known, being
equal to the initial left and right initial conditions. The region in the middle of the wave families is
indicated as the cross region. Water depth and velocity (d† and u†) can be calculated by means of
exact or approximate Riemann solvers (Toro 1997).

The `shoreline Riemann problem' is in principle very similar. In this case (indicated in the
NSWE framework as `dry bed Riemann problem') only the left wave family originates from the initial
discontinuity, being no medium in which the right wave can propagate. It can be demonstrated that
this left wave is a rarefaction and the rightmost wave of the fan coincides with the instantaneous
position of the shoreline (see �gure 3.6).

The characteristic curvesC+ and C− (Figure 3.6) are used to represent the solution structure for
the problem of �gure 3.3b) meet at the shoreline which can be considered as aC−-type characteristic
such that:

dx

dt
= λ1s = us − cs, (C−). (3.3.8)

In this case the (x, t)-plane is subdivided into three regions which characterize the solution of
the shoreline Riemann problem: region II is made of an expansion fan ofC−-type characteristics
connecting conditions of region I of left constant conditionsUL = (dL, uLdL) with the dry conditions
UR = (dR, uRdR) = (0, 0) of region III.

Notice that along the C− and C+ characteristics Riemann variables (R1,R2) = (u− 2c, u + 2c)
are not conserved (as in the case of inviscid NSWE) because of the presence of non-zero source
terms which also include dispersive-nonlinear contributions. On the contrary the following is valid:

dR1

dt
= S along C−,

dR2

dt
= S along C+ (3.3.9)
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water depth at time = 0

water depth at time t†

velocity at time t†

rarefaction shock

x

x

x

x

d

d

u

t

t†

x0

Figure 3.4: The generic Riemann problem.

where S = S2/d = ghx − τb + D.
It is, �nally, essential to notice that SBCs are only a simpli�ed version of:

dxs

dt
= us, or xs =

∫
us dt, (3.3.10a)

ds = 0 (3.3.10b)

and the purpose of any analyses dealing with SBCs is to suitably de�neus which appears in (3.3.10a)
by obeying the constraint (3.3.10b).

Following Brocchini et al. (2001) we compute us using conditions (3.3.9) in which ds = 0 =⇒
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(a) (b)

(c) (d)

x

x

x

x

t

t

t

t

UL UR

U†

UL UR

U†

UL UR

U†

UL UR

U†

Figure 3.5: Possible wave patterns in the solution of the Riemann problem.

I
II

III I
II

III

(a) (b)x x

t tC− C−

C+

C− C−

C+

Figure 3.6: C+ and C− characteristic patterns used to solve the Riemann problem at the shoreline:
(a) subcritical �ow, (b) supercritical �ow.

cs =
√

gds = 0 is used on the C− characteristic which represents the shoreline:

dR1

dt
= S along dxs

dt
= us, (3.3.11a)

dR2

dt
= S along dxs

dt
= uL + cL. (3.3.11b)

Integration of these gives

R1(t + ∆t) = R1(t) +
∫ t+∆t

t
Sdt along dxs

dt
= us, (3.3.12a)

R2(t + ∆t) = R2(t) +
∫ t+∆t

t
Sdt along dxs

dt
= uL + cL (3.3.12b)
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where in this case [R1(t),R2(t)] = [us − 2cs, u
L + 2cL] = [us, u

L + 2cL].
Substitution into equations (3.3.12) and knowledge of the integration path gives

R1(t + ∆t) = us(t) +
∫ (x+∆x)/us

x/us

S
us

dx, (3.3.13a)

R2(t + ∆t) = uL(t) + 2cL(t) +
∫ (x+∆x)/(uL+2cL)

x/(uL+2cL)

S
uL + 2cL

dx. (3.3.13b)

Notice that particular attention should be taken to evaluate integral contributions for small velocity
values. At the shoreline this only occurs when at the maximum run-up and run-down locations.

At the shoreline the above conditions are simultaneously valid (see �gure 3.6) hence giving the
�nal result

us(t) = uL(t) + 2cL(t) +
∫ (x+∆x)/(uL+2cL)

x/(uL+2cL)

S
uL + 2cL

dx−
∫ (x+∆x)/us

x/us

S
us

dx (3.3.14)

which replaces the condition
us(t + ∆t) = uL(t) + 2cL(t) (3.3.15)

valid for NSWE.
In the case of inviscid BTEs (i.e. with no seabed friction included) with purely dispersive extra

contributions, D → 0 in very shallow depths and the source term reduces to the acceleration due
to the beach slope. Therefore (3.3.15) can suitably be used to evolve the shoreline positionxs in
time through (3.3.10a) if either a splitting technique is used for such term (Brocchini et al. 2001)
or the coordinate transformation by Watson et al. (1992) is adopted. On the other hand, ifD also
contains nonlinear-dispersive terms (see section 2.3 for proper treatment of these terms) equation
(3.3.14) replaces (3.3.15).

3.4 Implementation of characteristic type SBCs
In section 3.3 the �uid velocity un+1

s at the interface between wet and dry states was obtained
by solving the `shoreline Riemann problem'. Now, in order to employ this solution as a boundary
condition for the BTE model, it should clari�ed what is the di�erence (if any) betweenun+1

s and
un+1

N , that is the boundary condition for the BTE model.
We can state that by assuming un+1

N = un+1
s unrealistic and numerically unstable solutions are

obtained by the BTE model. The reason is that us is the velocity of the �uid at a speci�c point
(the shoreline) of the computational domain, whileun+1

N should be representative of �ow conditions
in the region [xN − ∆x

2 , xN + ∆x
2 ].

A numerical technique to evaluate un+1
N from un+1

s is therefore needed. The basic assumption
we start from is that u and ζ are piece-wise constant over the three regions [xi − ∆x

2 , xi + ∆x
2 ],

i = N − 1, N, N + 1, hereinafter referred to as `computational cells'. The quantitiesun
N−1, un

N and
un

N+1 can therefore be viewed as integral averages of the solutionu(x)n, namely

un
i =

1
∆x

x
i+1

2∫

x
i− 1

2

u(x)ndx. (3.4.16)
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Now a suitable numerical method is to be chosen in order to evaluateun+1
N starting from piece-wise

constant initial conditions as depicted in �gure 3.8. It is necessary that the method can adequately
deal with solution discontinuities (between cells N − 1 and N) and treat the wet-dry interface
between cells N and N + 1 by taking the most from the accurate analysis performed in section
3.3. Brocchini and co-workers (Brocchini et al. 2001) showed that a NSWE nearshore �ow solver
based on the WAF (Weighted Averaged Flux) method can accurately simulate swash zone �ows and
shoreline motions. The WAF method is therefore adopted in the present study as the numerical
tool to evaluate un+1

N , i.e. the boundary condition of the BTE model. It is to be stressed that this
method is here merely used to convert the `real' velocity valueus into the `numerical' value un+1

N .

3.4.1 A WAF technique to move the shoreline
The WAF method is used to solve the conservative form of the NSWE. First, concentrate on the
homogenous form of equations (3.3.4) which is identical to the NSWE homogeneous problem for
horizontal bottom

Ut + F(U)x = 0. (3.4.17)
These equations can be integrated in a rectangular region of thex− t space (see �gure 3.7) in order
to obtain a weak form. Using Green's theorem:

∮
[Udx− F(U)dt] = 0. (3.4.18)

t

n+1

n

i−1 i i+1 x

Ūk

i−1 i i+1 x(a) (b)

Figure 3.7: Variables representation on a discretized domain: anticlockwise integration of (3.4.18)
on a discretized x− t space, (b) discrete solution behaviour.

These equations can be solved on a staggered grid as depicted in �gure 3.7 if written in the
following discrete form:

Un+1
kN

= Un
kN

+
∆t

∆x

[
F

n+ 1
2

k
N− 1

2

− F
n+ 1

2
k

N+1
2

]
, k = 1, 2 (3.4.19)

where F
n+ 1

2
k

N− 1
2

and F
n+ 1

2
k

i+1
2

are the intercell �uxes at the time leveln + 1
2 .

un+1
N can be obtained by time-stepping the solution applying equation (3.4.19) once the �uxes

between cells given by

F
n+ 1

2
k

N− 1
2

=
1

∆x

xN∫

xN−1

Fk

(
Un+ 1

2 (x)
)
dx, F

n+ 1
2

k
N+1

2

=
1

∆x

xN+1∫

xN

Fk

(
Un+ 1

2 (x)
)
dx, k = 1, 2 (3.4.20)
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rarefaction
wave

rarefaction
wave

shock
wave

x

x

x

d0

t
∆t
2

d

dN−1

dN

dN+1 = 0

N − 1 N N + 1

dRitter

d†dN−1

dN

Figure 3.8: Example of solution of the `shoreline Riemann problem'. Only the problem for the
U1 = d component is illustrated. Top: the piece-wise initial condition. Middle: the solution
structure in the (x, t)−plane. Bottom: solution of the Riemann problem in the physical space.

have been suitably evaluated (e.g. Toro 1992; Toro 1997). Notice that (3.4.20) coincide with
averages of the �uxes over the regions around the boundaries of each cell. From a practical point
of view, the �uxes are evaluated by performing a weighted average, from which the name of the
present method.

In order to evaluate the integrals in equation (3.4.20), a technique to estimate the value of the
variables at time level n + 1/2 is required. This technique is entirely based on the solution of
the Riemann problem, detailed in the previous section. In particular, at any given time level the
variables Uk have a piece-wise constant distribution and a Riemann problem in which the initial
data is made of a pair of constant states can be formulated. The value ofUk(x, tn+1/2) over the
whole computational cell is therefore preliminarily calculated and then the �uxes between cells are
obtained by means of equation (3.4.20).

Once the Riemann problems are solved, i.e. the stateU† and the speed of the waves are known,
the �uxes between the computational cells can be evaluated by means of following procedure (the
WAF method). The �rst step is to decompose the two regions of width∆x between nodes N − 1
and N and between nodes N and N + 1 in a number of segments, namelyAB, BC, CD, DE, EF ,
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FG and GH (refer to middle panel of �gure 3.8). For the speci�c case shown in �gure 3.8, which
consist of a left rarefaction wave and a right shock wave emanating from the wet-wet interfaces, the
length of the segments can be evaluated by means of the following expressions:

AB = ∆x
2 + ∆t

2 λl
h,

BC = ∆t
2

(
λl

h − λl
t

)
,

CD = ∆t
2

(
λr − λl

t

)
,

DE = ∆x
2 − ∆t

2 λr,

EF = ∆x
2 + ∆t

2 λ1,

FG = ∆t
2 (λs − λs

t ) .

(3.4.21)

Where λl
h and λl

t are respectively the celerity of the head and of the tail of the fan of the left
rarefaction wave. Since the right wave is a shock, a single speedλr ≡ λr

h ≡ λr
t has been used for

the right wave, but the generalization to the case in which the right wave is a rarefaction or the left
one is a shock is straightforward. Notice that in the case under investigation (see �gure 3.8) the
speeds λl

h and λl
t are negative. De�nitions (3.4.20) can therefore be approximated by

F
n+ 1

2
k

N− 1
2

=
1

∆x

[
Fk(UN−1)AB+Fk(Urarefact)BC+Fk

(
U†

)
CD+Fk(UN )DE

]
(3.4.22)

F
n+ 1

2
k

N+1
2

=
1

∆x

[
Fk (UN ) EF + Fk (URitter)FG

]
(3.4.23)

where Urarefact is a state representative of the value of the variables within the head and the tail
of the rarefaction wave and URitter is Ritter's solution (see Stoker 1957). Equation (3.4.22) is
found to be accurate even if a rough estimate ofUrarefact is provided, for example by assuming
Urarefact = (UN−1 + U†)/2 (Toro 1997). This is due to the fact that the segmentBC is usually
much smaller than AB, CD and DE.

Numerical tests have revealed that the �ux given by equation (3.4.23) is very sensitive to the
de�nition of URitter. The integral average over the segment FG should therefore be performed
adopting a more accurate integration method on the basis of Ritter's solution. It turns out that the
trapezoidal rule provides satisfactory estimate of the exact integral; the �nal expression adopted for
F

n+ 1
2

k
N+1

2

, k = 1, 2 reads

F
n+ 1

2
k

N+1
2

=
1

∆x

[
Fk (UN ) EF + F b

kFG
]

(3.4.24)

where F b
k is given by

F b
k =

1
4
Fk

(
dL, uL

)
+

1
2
Fk (dr, ur) +

1
4
Fk (0, us) (3.4.25)

in which dr and ur are the �uid depth and velocity at the center of the rarefaction fan. Note that
equation (3.4.25) is the expression of the trapezoidal rule adopted for the integration in the region
where Ritter's solution holds.

In order to solve equations (3.3.4), which di�er from (3.4.17) because of the presence of the
source terms, we follow the approach of Watson et al. (1992). These authors proposed a technique
based on the incorporation of the source terms into the Riemann problem. The idea is to transform
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the problem into a reference frame with horizontal acceleration equal togα − D, where α is the
bottom slope assumed to be constant in each cell andD are the dispersive-nonlinears terms. This
transformation gives a set of homogenous equations that can be solved as described before. Then,
by means of a reverse transformation, the solution is obtained in the original reference frame. Note
however that D, unlike gα, is not constant over each cell since its value depends on both the water
depth and the velocity. To overcome this undetermination,D is assumed to be constant over ∆t,
given that this value is computed at the beginning of the time step.

The new variables in the accelerating reference frame are

ξ = x + 1
2 (gα−D) t2, τ = t,

v = u + (gα−D) t, ς = d.
(3.4.26)

If these new variables are substituted into (3.3.4) a set of homogenous equations, formally identical to
(3.4.17) is obtained. Once the solution is found in the accelerating frame, the reverse transformation
yields the following relations between (3.4.26) and the original variables

u(x, t) = v
[
x + 1

2 (gα−D) t2, t
]− (gα−D) t,

d(x, t) = ς
[
x + 1

2 (gα−D) t2, t
]
.

(3.4.27)

U† U†

UL ULUR UR

ξ x

τ t

(a) (b)

Figure 3.9: Riemann problem solution in the accelerating (a) and in the stationary (b) reference
frames.

The structure of the solution of the Riemann problem in the case of a left rarefaction and a
right shock wave is shown in �gure 3.9. The solution in the accelerating (panel a) reference frame is
identical to the solution of equations (3.4.17) while in the stationary frame (panel b) the trajectory
of each wave is no longer a straight line but turns into a parabola.

From a practical point of view, in order to apply the WAF method, the quantity1
2 (gα−D)∆t

must be subtracted from all the velocities and, in evaluating the weights of each �ux, it is to be
considered that the solution is shifted inx by a constant amount 1

2 (gα−D)
(

1
2∆t

)2.
Equation (3.4.19), modi�ed to take into account source terms e�ects reads

Un+1
kN

= Un
kN

+
∆t

∆x

[
F

n+ 1
2

k
N− 1

2

− F
n+ 1

2
k

N+1
2

]
+ S

n+ 1
2

N ∆t, k = 1, 2 (3.4.28)

where
S(U) =

[
0

−gdα + dD

]
. (3.4.29)
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[Notice that in the original work (Watson et al. 1992) because of a typographical error an incorrect
expression for S(U) is reported on equation 3.4.29.]

Finally, the technique to change the value ofN during the run-up phase is based on the volume
of �uid entering the dry cell N + 1 at each time step. An estimate of this volume can be obtained
by applying the WAF method to the cellN + 1. The expression (3.4.28) reads in this case:

Un+1
kN+1

=
∆t

∆x

[
F

n+ 1
2

k
N+1

2

]
+ S

n+ 1
2

N+1∆t, k = 1, 2 (3.4.30)

since Un
kN+1

= 0, k = 1, 2 and F
n+ 1

2
k

N+3
2

= 0 , k = 1, 2.

If dn+1
N+1∆x is greater than a threshold value the cell is inundated and at the following time step

the new value of N = N + 1 is employed.
During the run-down phase a simpler technique provides good results. This is based on the use

of the water depth at nodeN : if dn+1
N is lower than a threshold value at the following time step the

new value of N = N − 1 is employed.
Note that in this work run-up and run-down phases were de�ned on the basis of �ow direction

at node N − 1 at the time level n: un
N−1 > 0 de�nes run-up, un

N−1 < 0 run-down.

3.4.2 The basic steps of the proposed procedure
Let us now brie�y summarize the basic steps required to apply the proposed procedure. Assume
that the dependent variable d and u are known over the computational grid at time leveln. The
objective is to compute un+1

N and dn+1
N which are the boundary conditions for the wave solver. The

�rst step is to solve the Riemann problems at the interfaces between cellsN − 1, N and N + 1.
On the basis of the solution of the Riemann problems the �uxes at the interfaces of the cellN are
estimated by means of equations (3.4.22) and (3.4.24). Once the �uxes are known, the solution
at node N is updated by applying equation (3.4.28). At this point, the model checks if at the
subsequent time step the value ofN is to be changed, i.e. if the shoreline is to be moved. This can
occur either in the form of run-up when the volume of water in the cellN + 1 is larger than the
chosen threshold and the same cell is inundated becoming part of the computational domain or in
form of run-down when the depth in the cellN is lower than the threshold and the cell is removed
from the computational domain becoming a dry cell.

3.5 Performance evaluation of the BTE model with the new SBCs
A number of tests are here reported to help the reader evaluate the performances of the
implementation of the new SBCs (section 3.4) in the BTE model described in section 2.2.

Analytical solutions are the most suitable for evaluating the performances of the implemented
SBCs as they represent an exact benchmark. We here consider three important analytical solutions
for waves propagating over a uniform sloping beach. They respectively model the run-up due to a
depression of the water level (the �uid held motionless) which is suddenly released (the `Carrier and
Greenspan's run-up solution', Carrier and Greenspan 1958), the run-up and run-down characteristic
of a periodic wave travelling shoreward and being re�ected out to sea (the `Carrier and Greenspan's
standing wave solution', Carrier and Greenspan 1958) and the run-up of a solitary wave (the
`Synolakis run-up solution', Synolakis 1987).
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3.5.1 The Carrier and Greenspan run-up solution
This test corresponds to the physical problem in which the water level at the coastline of a plane
uniform beach is depressed, the �uid held motionless and then released. It also represents the most
classical test conditions for assessing the quality of any run-up solver.

Carrier & Greenspan (1958) used a hodograph transformation to solve the NSWE and obtained
an analytical solution of this problem. The transformation makes use of two dimensionless variables
(σ∗, λ∗) which are respectively a space-like and a time-like coordinate). Dimensionless ordinary
variables and �ow properties are then related to the hodograph coordinates as follows:

x∗ =
1
4
φ∗λ −

1
16

σ∗
2 − 1

2
u∗

2
, t∗ =

1
2
λ∗ − u∗, (3.5.31a)

η∗ =
1
4
φ∗λ −

1
2
u∗

2
, u∗ = φ∗σ∗/σ∗ (3.5.31b)

where φ∗ is a `potential function' which depends on the speci�c propagation problem under
investigation.
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Figure 3.10: The `Carrier & Greenspan run-up test' on a uniform plane beach. Dimensionless,
scaled, analytical (dotted lines) and numerical (solid lines) pro�les of water elevationζ∗ are plotted
versus the dimensionless onshore coordinate x∗ at dimensionless times increasing of ∆t∗ = 0.05
from t∗ = 0.00 (bottom curves) to t∗ = 0.80 (top curves).
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The `run-up solution' is speci�ed by the following initial conditions att∗ = 0

ζ∗ = ε

[
1− 5

2
a3

(a2 + σ∗2)3/2
+

3
2

a5

(a2 + σ∗2)5/2

]
, (3.5.32a)

u∗ = 0, (3.5.32b)

x∗ = −σ∗

16
+ ε

[
1− 5

2
a3

(a2 + σ∗2)3/2
+

3
2

a5

(a2 + σ∗2)5/2

]
(3.5.32c)

where a = 3/2(1 + 0.9ε)1/2 and ε is a nonlinearity parameter.
Further details on both initial conditions and the analytical solution can be found in the original

work of Carrier & Greenspan.
In �gure 3.10, which is the equivalent of �gure 7 of (Carrier and Greenspan 1958), the analytical

solution ζ∗/ε versus the onshore coordinate x∗ is shown by means of dotted lines for di�erent
adimensional times. On the other hand, solid lines pertain to the numerical results while the
thicker line represents the sloping seabed. It is evident that an excellent matching exists between
the analytical and the numerical solution. It is also worth underlying that no spurious oscillations
are present near the shoreline. Any oscillatory behaviours would reveal two possible sources of
errors:

• a bad implementation of the SBCs in the chosen BTE model;

• a bad implementation of the `wetting-drying' procedure.

On the contrary, the smooth behaviour of the elevation pro�les of �gure 3.10 testi�es the absence
of such problems.

3.5.2 The Carrier and Greenspan standing wave solution
This solution of the NSWE represents the motion of a wave of dimensionless amplitudeA∗ and
dimensionless frequencyω∗ travelling shoreward and being re�ected out to sea generating a standing
wave (Carrier and Greenspan 1958). In the past it has been widely used to analyze the dynamics
of water waves approaching a coast or a continental shelf (Carrier 1966; Carrier 1971).

Such a solution can be speci�ed by means of the following potential function:

φ∗(σ∗, λ∗) = A∗J0(ω∗σ∗) cos(ω∗λ∗) (3.5.33)

where J0 is the Bessel function of the �rst kind.
Once (3.5.33) is substituted into (3.5.31) a solution can be found for all the �ow properties of

interest in the ordinary (x∗, t∗)−space. Such a solution has been obtained both analytically and
numerically for the case A∗ = 0.6 and ω∗ = 1 (non-breaking wave).

In �gure 3.11 both pro�les of the numerically-computed free surface elevation and the envelope
of the analytically-derived surface elevations are reported. The �gure reveals an almost perfect
agreement between analytical and numerical solutions. Again, the absence of any oscillations in the
numerical solution is particularly satisfying.

The comparison can also be pushed forward to analyze any possible di�erences in the horizontal
motion of the shoreline. This is reported in �gure 3.12 in which a dotted line is used to represent
the analytical solution while the solid line gives the numerical shoreline. Apart from a very
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Figure 3.11: The `Carrier & Greenspan standing wave test' on a uniform plane beach: envelope
of surface elevations. Envelope of the dimensionless, analytical solution by Carrier & Greenspan
(dotted lines) and numerical (solid lines) pro�les of water elevation ζ∗ are plotted versus the
dimensionless onshore coordinate x∗.

small underestimation at the peak of the run-up (which could be �xed by increasing the spatial
discretization) the numerical solution perfectly matches the analytical one. This does not happen
when employing arti�cial techniques like the slot-technique (Madsen et al. 1997) which always
introduce a loss of mass (revealed by a reduced swash amplitude). The agreement is even more
remarkable in view of the structure of the proposed SBCs which does not depend on any calibration
parameters.

3.5.3 The Synolakis run-up solution
Synolakis' solution (Synolakis 1987) is one of the very few available analytical solutions for the
run-up of a solitary wave (a similar solution is also available for the interactions of solitary waves
in shallow waters, see Brocchini 1998). Such an equations has been obtained in the framework of
the NSWE but has been shown to model very well beach inundation conditions caused by solitary
waves.

In Synolakis' solution a solitary wave of dimensionless heightH∗ centered at a distanceX∗
1 from
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Figure 3.12: The `Carrier & Greenspan standing wave test' on a uniform plane beach: horizontal
motion of the shoreline. Incident wave of dimensionless amplitudeA∗ = 0.6 and dimensionless
frequency ω∗ = 1. Dimensionless analytical shoreline path as from Carrier and Greenspan (1958)
(dotted line) and numerical shoreline path (shoreline line) in time.

the shore at time t∗ = 0:

ζ∗ =
H∗

d∗
sech2[γ(x∗ −X∗

1 )], where γ =
√

3H∗/4d∗ (3.5.34)

is propagated over a combined topography made of a plateau of depthd∗ and a plane sloping beach
of slope β; matching of the two regions occurs at x∗ = X∗

0 = cotβ (see �gure 3.13) .

x∗

y∗

H∗

d∗

X∗
0X∗

1

β

Figure 3.13: De�nition sketch for the initial condition of Synolakis' run-up solution.

Propagation of the above signal by means of the NSWE is more easily modelled if Carrier
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& Greenspan's (Carrier and Greenspan 1958) hodograph transformation and a Fourier transform
technique are used in combination. This brings to the following de�nition forφ∗:

φ∗(σ∗, λ∗) = −32i
3

∫ ∞

−∞
cosech(ξk∗) J0(k∗σ∗X∗

0/2)eik∗θ

J0(2k∗X∗
0 )− iJ1(2k∗X∗

0 )
dk∗ (3.5.35)

where ξ = π/2γ and θ = X∗
1 −X∗

0 + λ∗X∗
0/2 is the pulse phase.

We refer the reader to Synolakis (1987) for a detailed description of the solution.
We used such a solution to illustrate the model performances to reproduce the run-up of a

solitary wave. More speci�cally we have tried to reproduce Synolakis' results given in his �gure
6. This summarizes the comparison of the analytical solution and experimental data in the case
of solitary wave of H∗/d∗ = 0.019 climbing up a 1 : 19.85 beach. Cross-shore pro�les of the free
surface elevation at di�erent stages of the run-up process are reported on �gure 3.14. Notice that
instead of centering the initial wave pro�le atX∗

1 = 37.35 we used X∗
1 = 40. This only introduces

a small shift in the origin of the times.
A very good matching exists between the numerical solution provided by the BTE model (solid

lines) and Synolakis' analytical solution (dotted lines). The matching is almost perfect during most
of the run-up. However, when the wave is just to reach the maximum run-up small discrepancies
can be found far from the shore (i.e. x∗ > 10), the numerical solution being slightly smaller than
the analytical one. This discrepancy can be ascribed to two connected reasons:

1. being obtained within the NSWE framework Synolakis' solution best represents �ow conditions
near the shoreline;

2. Synolakis' solution was seen to slightly overestimate experimental data far from the shore.

However, near the shoreline (i.e for x∗ < 4) matching of the two solutions is always excellent,
again suggesting a good implementation of the SBCs in the chosen BTE model.

3.6 Conclusions
A novel type of SBCs has been proposed for Boussinesq-type models. This is derived by using
the characteristic form of the NSWE and is shown to properly model the shoreline motion. The
methodology used to implement such SBCs in a speci�c BTE model is illustrated and its e�ectiveness
veri�ed by means of three di�erent analytical solutions. The illustrated model represents an e�cient
tool for modelling nearshore �ows and analysis is underway to compare it with a shock-capturing
version of the same BTE model in which nonlinear-dispersive terms are regarded as forcings of the
classical NSWE.

DSIC - Università degli Studi di Roma Tre - Rome, Italy 45



DELOS PROJECT

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

-2-101234567891011121314151617181920

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

-2-101234567891011121314151617181920

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

-2-101234567891011121314151617181920

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

-2-101234567891011121314151617181920

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

-2-101234567891011121314151617181920

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

-2-101234567891011121314151617181920

Figure 3.14: The `Synolakis run-up solution'. Dimensionless free surface elevationζ∗ as functions
of the dimensionless x∗ coordinate at di�erent adimensional times t∗ = 20, 30, 35, 40, 45, 50 (from
left to right and from top to bottom). The solid line represents computed data while solid circles
are used for Synolakis analytical solution.
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Chapter 4

A new treatment of wave-breaking in
Boussinesq-type models

4.1 Introduction
An attempt at improving wave-breaking modelling in fully nonlinear Boussinesq-type models is
here described. The approach extends the work of Veeramony and Svendsen (2000) to give a more
�exible and accurate description of the turbulence due to a breaking wave. Turbulent stresses are
handled by means of the Boussinesq hypothesis and the eddy viscosity is assumed to be constant
in time but varying in space, in particular over the water depth. The model is described in detail
and its performances are evaluated both against an available semi-analytical solution and against
experimental data of regular waves breaking over a slope. Prediction of the wave height decay is
comparable to that of given by the solution of Veeramony and Svendsen (2000). Four di�erent
vertical pro�les of eddy viscosity are considered and the di�erences in terms of hydrodynamic
features are discussed. The model allows to estimate the velocity �elds under a breaking wave,
which is fundamental to describe the hydrodynamics in the vicinity of low-crested structures.

4.2 Overview
Modelling the �ow inside the surf zone is crucial in order to understand and predict the complex
hydrodynamics in the vicinity of low-crested structures. The present study aims at improving the
treatment of wave breaking in Boussinesq-type models. Although Boussinesq models can handle
most of wave phenomena occurring in the nearshore (like refraction, di�raction, shoaling, dispersion
and nonlinear interaction) they cannot predict where and when a wave breaks. Therefore the e�ects
of wave breaking (e.g. the energy dissipation and the momentum transfer to long waves) are not
described by these models. Since wave breaking cannot be intrinsically handled by the model itself
it is necessary to detect the location of the breaking point and to describe the energy dissipation
due to breaking with additional terms in the Boussinesq equations which represent the excess of
momentum related to breaking.

In the last decade many approaches have been followed, here a brief description of each is given.
A very simple approach is that of Zelt (1991) which adds turbulent stresses to the momentum
equation to model the dissipation of energy, by conserving the overall momentum. The breaking
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criterion was based on a critical ratio between the local wave height and the water depth (H/h) and
on a critical value of the velocity gradient in the cross-shore directionux. Karambas and Koutitas
(1992) used an eddy viscosity approach too, but their model assumes that breaking can be treated
as an unresolved turbulent motion. By using the mixing length hypothesis, they determined the
eddy viscosity by integrating the turbulent transport equation. The breaking criterion which they
used was based on the ratio between the crest elevation at the breaking point,ζcb and the wave
length in deep waters L0. Also Chen et al. (1999) and Kennedy et al. (2000) used Zelt's approach
for both 1DH and 2DH Boussinesq models. In these studies the breaking criterion was related to
the value of the variation in time of the surface elevation. A similar approach has been proposed by
Schä�er et al. (1993): the breaking starts when the slope of the water surfaceα exceeds a critical
value αb and the breaking stops if α < α0. Both αb and α0 are calibrated using experimental
observations. Once breaking has started, an exponential decrease in time ofα is assumed

tanα = tanα0 + (tanαb − tan α0) exp
[
− ln

(
2
t− t0

Tb

)]
(4.2.1)

where tb is the time at which breaking starts andTb is a characteristic duration of breaking.
Another approach to wave breaking modelling is based on the roller model. The roller is the

region in a spilling breaker in which an air-water mixture recirculates near the front of a breaking
wave while translating at approximatively the same speed of the wave. The idea of the roller was
�rst introduced by Svendsen (1984) while Brocchini et al. (1992) and Schä�er et al. (1993) used
this approach to incorporate the e�ects of breaking in their Boussinesq model. In the former study
the contribution of the roller was taken into account only through an added pressure term in the
momentum equation the roller being considered as a rigid body which does not participate in the
�uid motion. In Schä�er et al. (1993), the horizontal velocity was assumed uniform below the
roller and equal to the wave celerity within the roller region. In all the aforementioned works the
�ow motion in the wave body is assumed to be irrotational. However, as the breaking process
begins vorticity is advected and di�used inside the �uid (e.g. Ting and Kirby 1996; Chang and Liu
1999), hence the assumption of irrotational �ow is only valid as a �rst approximation in the case of
breaking waves (this is especially true for breaking in shallow waters). Moreover, the assumption of
irrotational �ow is such that important phenomena like the undertow cannot be suitably modelled
by using a Boussinesq-type model.

The most recent Boussinesq-type models attempt at removing the assumption of irrotational �ow
and regard the injection of vorticity due to the roller as the fundamental ingredient for a physically-
based description of the energy dissipation (Veeramony and Svendsen 2000; VS hereinafter). VS
used the similarity between the �ow of a spilling breaker and that typical of a hydraulic jump to
derive boundary conditions describing vorticity injection at the lower edge of the roller. Hence,
a fully nonlinear Boussinesq-type model, in which the breaking terms are derived directly by a
decomposition of the velocity into a potential and a rotational part, is coupled with the vorticity
transport equation (VTE hereinafter) which is used to evolve the horizontal component of the
vorticity needed to compute the rotational contribution to the �ow velocity. This approach is the
starting point of the present work, hence it is discussed in detail in the next session.
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4.3 A fully nonlinear Boussinesq-type model
The Boussinesq equations have been introduced in section 2.1; for the reader's convenience
brief remarks are reported herebelow posing emphasis on wave-breaking inclusion into the model
equations. In VS, the Boussinesq equations have been derived by integrating the Reynolds equations
over the depth and by applying the kinematic and dynamic boundary conditions at the bottom and
at the free surface. In particular (see 4.1) by assuming a cartesian reference frame(x, z) and by
taking (u,w) as the horizontal and vertical velocity components respectively, the surface elevation,
ζ, and the depth-averaged velocity, ū, can be used as the dependent variables of the Boussinesq-type
equations. These are made dimensionless with the following scales: the wavenumberk, the local
water depth h and the wave amplitude a. The following equations are thus obtained which are
characterized by two dimensionless parameter µ = kh (measuring the frequency dispersion) and
δ = a/h (measuring the nonlinearities):

ζt + [ū (h + δζ)]x = 0 (4.3.2)

ūt+δūūx + ζx + µ2
[(

B − 1
3

)
h2ūxxt − 1

2hhxxūt − hhxūxt

]
+ Bµ2h2ζxxx

+δµ2
[−1

3h2ūūxxx − hζxūxt + 1
3h2ūxūxx − 2

3hζūxxt − 3
2hhxxūūxx

−1
2hhxxxū2 − hhxūūxx − ζhxūxt − hxζxūt − 1

2ζhxxūt + Bh2 (ūūx)xx

]

+δ2µ2
[

1
6ζ2ūxxt − 1

3hζūxūxx − 1
3hūxx (ζū)x + h

(
ζū2

x

)
x
− 1

2

(
ζ2ūxt

)
x

−2
3h (ζūūxx)x − ζxhxxū2 − ζhxūūxx − 1

2ζhxxxū2 − 3
2ζhxxūūx − ζxhxūūx

]

+δ3µ2
[−1

3ζ2ūūxxx − ζζxūūxx + ζζxū2
x − 1

3ζ2uxūxx

]

+
[
δ (∆M)x + µ2 ((∆P )xxt −Ds) + δµ2 ((∆M1)x + Dw + Duw)

]
(h + δζ)−1 = 0

(4.3.3)

where subscripts are used to denote partial di�erentiation and the linear operator

L = 1 + Bµ2h2 ∂2

∂x2
(4.3.4)

introduced by Madsen et al. (1991) to improve the dispersion characteristics has also been
applied (the value of the free parameterB is chosen so that the model's dispersive characteristics
better mimic the linear theory in deep waters). In equations (4.3.2) and (4.3.3), the �ow velocity
is computed by di�erentiating the streamfunctionψ which, in turn, can be obtained by integrating
in space the equation which de�nes ω in terms of ψ.

It is worth stressing that the assumption of irrotational �ow has been removed here. Indeed the
velocity turns out equal to:

u = up + ur (4.3.5)
where up, representing the potential �ow velocity, is equivalent to the velocity of typical potential
�ow formulations, while ur, i.e. the rotational velocity component, is assumed to be only due to
the vorticity caused by the breaking. Thus the terms inside the square bracket of the last line of
equation (4.3.3), which are only due to ur, are called �breaking terms�. In particular, Ds is related
to the shear stress inside the �uid, (∆M)x and (∆M1)x give the excess of momentum �ux due to
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the vertical variation of the rotational velocity, (∆P )xxt is the contribution to the pressure due to
the vertical motion, Dw is the excess of momentum due to the vertical motion andDuw represents
the interaction between the waves and the mean �ow. For more details on such classi�cation please
refer to VS.

All the expressions of the breaking terms are here omitted, su�ce it to say that they all require
knowledge of the rotational velocity which is a further unknown of the problem. Hence, to close the
problem it is necessary to introduce a further equation for theur. It is possible to show that:

ur ≡
z∫

−h

ωdz − µ2

z∫

−h

z∫

−h

z∫

−h

ωxxdzdzdz + O
(
µ4

)
(4.3.6)

i.e. that it is possible to compute the rotational velocity by an integration of functions of the
vorticity ω only. This is the means by which the Boussinesq model is coupled with the VTE. Figure
4.1 shows the most important parameters involved in the problem.

Figure 4.1: Schetch of �ow characteristics and notation.

With the same scales used for the Boussinesq model this equation may be written in the
dimensionless form:

ωt + δuωx + δwωz = νtωzz + 2νtzωz + νtzzω + O(µ2, hx) (4.3.7)

where the eddy viscosity νt is here taken to be variable within the �uid i.e. νt = νt(x, z).
In VS this quantity has been considered uniform over the water column i.e. νt = νt(x). The

latter assumption leads to the possibility of an analytic solution to be found for the problem which
is determined by a suitable set of boundary conditions:

ω (z = ζe, t) = ωs (x, t) (4.3.8)
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ω (z = −h, t) = 0. (4.3.9)
Although the assumption of depth-independence of νt can be useful to derive VS's analytical

solution the turbulence structure of breaking waves is such that much of the turbulence generated
at the free surface penetrates into the water body by vertical advection and di�usion (e.g. Ting
and Kirby 1996; Chang and Liu 1999). It is, thus, clear that the assumptionνtz = 0 is theoretically
rather crude and many experimental studies reveal the need for an adequate description of the
vertical structure of νt (e.g. Cox et al. 1995). We here attempt at such description which can only
be possible if a suitable procedure is used to solve the VTE withνt = νt(x, z). The �rst step is
to introduce a change of variables (also used by VS) which allows for an easier treatment of the
equation. Since the lower edge of the roller is considered the upper boundary of the computational
domain and since it is not parallel to a line z=cost it would be di�cult to assign there boundary
condition. Transformation of both equations and boundary conditions into sigma-coordinates avoids
this problem. The variable transformation reads:

x = x, t = t, σ =
h + z

h + δζe
. (4.3.10)

As σ itself is a function of time and space, in the VTE new terms due to the coordinate variation
in time and space appear. The �nal form of (4.3.7) inσ−coordinate and accurate up toO

(
µ2, hx,

)
reads:

∂ω
∂t − δ

[
σ

h+δζe

∂ζe

∂t

]
∂ω
∂σ + δu∂ω

∂x − δ
[

uσ
h+δζe

∂ζe

∂x

]
∂ω
∂σ + δ

[
w

h+δζe

]
∂ω
∂σ =

+
[

νt

(h+δζe)
2

]
∂2ω
∂σ2 +

[
ω

(h+δζe)
2

]
∂2νt
∂σ2 +

[
1

(h+δζe)
2

∂νt
∂σ

]
∂ω
∂σ

(4.3.11)

where, for the sake of clarity, we reverted to the standard notation for di�erentiation.
The associated boundary conditions are given along iso-σ lines and read:

ω (σ = 1, t) = ωs (x, t) (4.3.12)

ω (σ = 0, t) = 0. (4.3.13)
Equation (4.3.11) together with boundary condition (4.3.12), (4.3.13) can be coupled with the

1DH Boussinesq model equations in which the breaking terms are accounted for.

4.4 A numerical solution of the VTE
SV solved (4.3.11) using a spectral method. Retaining terms ofO

(
µ2

)
and assuming the eddy

viscosity to vary only with x, the vorticity is given by a series expansion:

ω = σωs +
∞∑

n=1

Gn sin (nπσ). (4.4.14)

In the present study to allow for a vertical variation of the turbulence (i.e. νt = νt(x, z)) a
numerical approach is used to solve (4.3.11) by means of a �nite-di�erence technique.
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An Adams-Bashforth-Moulton (ABM hereinafter; Press 1992) predictor-corrector method is used
to integrate both the Boussinesq model and the VTE. In particular for the Boussinesq model the
scheme is of the third order in time at the predictor stage and of the fourth order at the corrector
stage. As the order of derivatives in the VTE is lower than in the Boussinesq equations the order
of the scheme used to solve the VTE may be lowered without a�ecting the accuracy of the solution
and with the advantage of increasing the stability of the model. The ABM scheme that we use to
solve the VTE is of the second order in time at the predictor stage and of the third order at the
corrector stage.

In order to calculate the rotational velocity and all the breaking terms the vorticity �eld is
obtained at each time step of the Boussinesq model in each point of the domain. The VTE
integration module needs as input data both the boundary values ωs, the roller thickness and
the depth-averaged velocity ū. Boundary conditions for the vorticity are given by the following
empirical relation derived by VS:

ωs = 15.75
(

1− x− xt

lr

) (
1− e−40

x−xt
lr

)
(4.4.15)

which shows that the vorticity is maximum at the toe of the breaker. The roller thickness is also
given by an empirical relation.

Finally, the local value of the velocity componentu is evaluated by the expression:

u = ūp + µ2 (hūp)xx

(
∆1

2
− z

)
+

µ2

2
ūpxx

(
∆1

3
− z2

)
+ ur + O

(
µ4

)
(4.4.16)

where:
∆1 = (δζ − z) (4.4.17)

and the rotational velocity is given by (4.3.6). The componentw is obtained by using the continuity
equation ux + wz = 0.

Since the stability condition of the Boussinesq model is di�erent and less restrictive than that
for the VTE a coupled integration in time should be run by using the small time step required for
the VTE hence dramatically reducing the computational e�ciency. To avoid this problem a �mode
splitting� technique has been used. A number of time steps of the VTE integration model (internal
module) are carried out for each time step of the Boussinesq model (external module). Since the
boundary conditions, the free surface elevation and and the depth-averaged velocity are calculated
by the Boussinesq model a data reconstruction by linear interpolation has been carried out to obtain
values of these variables in the internal module. This technique is common in problems in which the
free surface has to be resolved together with a scalar quantity that di�uses in the �uid (Blumberg
and Mellor 1987).

In the roller region the vorticity distribution is not calculated. Nevertheless, the contribution of
this region to the breaking terms is of great importance; therefore a linear distribution ofω in this
region has been a priori assumed. Once the quantity ω has been calculated, the breaking terms in
(4.3.3) may be calculated. The eddy viscosity distribution over the water columnN(z)is assumed
such that its maximum value is located at the water surface except at the roller where the maximum
is located at the lower edge of the roller. This values is estimated by a mixing length hypothesis:

νt = νt0h(x)
√

gh(x)N(z) (4.4.18)

where νt0 is a constant which assumes values in the range0.01− 0.04.
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4.5 Comparison with experimental data
The performances of the present model have been compared with two sets of experimental data from
Hansen and Svendsen (1979) (HS hereinafter), Cox et al. (1995) and Cox and Kobayashi (1997)
(CK hereinafter). The tests mainly aim at gaining information on the features of the numerical
solution of the VTE by comparing the results with those which are obtained with VS's analytical
solution. We also try to assess the di�erences between various possible pro�lesN(z) for the eddy
viscosity pro�les. To this purpose the data of CCox et al. (1995) are the most valuable as velocity
pro�les are available in conjunction with other synthetic data like the wave height decay.

The experimental studies of Cox et al. (1995) on the propagation of regular waves over a
uniformly sloping beach have been carried out at the Ocean Engineering Laboratory of the University
of Delaware. The experimental �ume was 33m long, 0.6m wide and 1.5m deep, the steepness of
the sloping part was of 1 : 35. The bottom was made of concrete and it was made rough by gluing
natural sand to the bottom (d50 = 1.0mm). The water depth on the horizontal bottom was of0.4m.
A schematic view of the experiment is given in �gure (4.2).

Six measuring lines, L1, L2, L3, L4, L5, L6, were located along the slope. The position of the
lines was chosen in order to have L1 in the shoaling region, L2 at the breaking point (de�ned in
the experiments as the onset of aeration in the tip of the wave crest)L3 was in the transition
region (where the wave evolves towards a bore),L4, L5 and L6 were all in the inner surf zone. In
correspondence of the six measuring lines, surface elevation measurements were obtained by using
six capacitance wave gauges and the velocities were measured over the the water column by using
a Laser Doppler Velocimeter (LDV). Due to the dropout of the LDV the velocities are signi�cant
only under the level of the wave trough. Cox and co-workers simulated only one wave condition
(H = 0.115m, T = 2.2s) obtaining spilling breakers. The same experimental setup has been used
in CK for the measurement of the undertow current.

Figure 4.2: Experimental setup of Cox et al. (1995)

The numerical �ume di�ers from the real one as it is not necessary to model the whole length
of the uniform-depth region of the �ume. The total length of the computational domain is of18m,
where the horizontal bottom is1m long, with a water depth ofh0 = 0.4m. At the onshore boundary
a sponge layer is used, the onshore shelf is 5.65m long with a depth of 0.04m. Cnoidal waves have
been generated at the o�shore boundary using a generating-absorbing condition (Van Dongeren and
Svendsen 1997).

The experimental setup used in Hansen and Svendsen (1979) is quite similar to that above
described. The �ume was 0.6m wide, 32m long, the slope of the beach was 1 : 34.26 and its toe
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was 14.78m far from the wavemaker. Being the primary object of the experiments the evaluation of
the wave height decay, wave heights were accurately measured by using a wave gauge mounted on
a movable carriage. Unfortunately surface pro�le measurements are available only seaward of the
breaking point, while no measurements were made of the �ow velocities.

Among the 18 wave conditions simulated in the experiments two cases of spilling breakers were
chosen for the comparison. The �rst test (named "test Q") has the following characteristics:H =
0.0375m, T = 2.0s. While the second test (named "test O") had: H = 0.0399m, T = 2.5s.
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Figure 4.3: Wave height comparison. Red diamonds represent experimental results from Hansen
& Svendsen (1979), black circles results from VS numerical simulations. Solid black line, present
model.

The �rst set of results here shown aims at comparing the numerical solution of the problem
(VTE+Boussinesq) and the semi-analytical approach by VS (analytical VTE + numerical
Boussinesq), both using a uniform pro�le of eddy viscosity over the water column. The value
of νt0 in these simulations has been kept equal to 0.01 a value also prescribed in Cox et al. (1995).
The critical value (for breaking) of the free surface slope has been �xed toαb = 26◦. All the tests
were run with a spatial and temporal discretization equivalent to those used in VS and Musumeci
et al. (2003).

Figure 4.3 shows the comparison of the wave heights along the �ume and obtained with the
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mathematical models and from the experiments. The wave height in the shoaling region is the
result of the interaction between the �ow coming from o�shore and the waves re�ected o� the
beach. Only the latter contribution can be di�erent in dependence of the approach (analytical
or numerical) used to solve the VTE over the surf zone. For the case at hand this is negligible.
Moreover, both models underestimate the wave height at breaking. In the transition region, both
models predict almost the same wave height dissipation rate, which is di�erent from that typical of
the inner surf zone. The most important evidence which is brought up by this �gure is the di�erence
between the model of VS and the present model in predicting is the wave height distribution in the
inner surf zone: where the numerical solution of the VTE seems to give a lower dissipation. The
source of this di�erences becomes more clear when looking at the velocity pro�les predicted by the
models and those coming from the experiments of Cox et al. (1995).

From the comparison of the evolution in time of the pro�les of the vorticity (�gure 4.4 and 4.7,
each �gure shows surface pro�les, the roller area and vorticity pro�les over a wave period at each
of the six gauges used in the experiment: from top panel L1 to bottom panel L6) it is clear that
both models represent in a similar way the vorticity dynamics under the breaking wave. However,
several remarkable di�erences require discussion. For example, it is clear that in the present model
vorticity does not penetrate down in the water body as rapidly as predicted by the model of VS.
Moreover, the model of VS predicts a rather intense vorticity much downstream of the wave crest.

These di�erences largely in�uence the computation of the rotational velocities. Smaller absolute
values of ur are computed by means of the numerical solver of the VTE (�gure 4.5 and �gure 4.8).
However, from a qualitative point of view the pro�les of ur computed from the fully numerical
solution of the problem seem closer to the experimental pro�les over much of the water column
(clearly no sensible comparison can be made between �ow velocities near the bed). This is
particularly clear when analyzing the �ow region downstream the wave crest (see fourth and
�fth panels of �gures 4.5 and 4.8): the pro�les of ur computed from the analytical solution are
characterized by stronger vertical gradients than both the numerical and the experimental solutions.

Both models show a similar sensitivity to the sizeνt0 of the eddy viscosity. As it increases from
0.01 to 0.03 the di�usion of vorticity in the �uid is more rapid and also vorticity dissipation is faster
(compare 4.4 with 4.7 and 4.5 with 4.8). Also the comparison with data from Cox et al. (1995)
shows that the dissipation in the inner surf zone (L5 and L6) is higher in VS model rather than in
the present one. In both models waves begin to break a little bit upstream ofL3, where, as shown
in the experiments, breaking has already occurred. This has been obtained by setting the critical
value of surface slope at αb = 26◦.

The comparison of the pro�les of the velocity component u shows that this is overestimated
by both models in correspondence of the crest. Since VS's solution predicts a rotational �ow
with strong vertical gradients a similar feature can be seen in the total velocity which is found to
di�er much from the measured pro�le in the upper part of the water column. On the other hand,
the present model predicts a larger velocity because of a reduced energy dissipation, however, the
pro�les seems to be qualitatively similar in shape to the measured ones. This is particularly true
away from the wave crest where velocities predicted by the present solver because of the smaller
vorticity generation �t better the experimental data than VS's solution. The above considerations
hold true for both values of νt0 used in the comparison.
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Figure 4.4: Time evolution of the vorticity pro�les at the six locations (from top L1 to bottom L6)
of the gauges of Cox et al. (1995). Blue solid line, experimental results, red solid line, results from
the present model (the roller area is also shown below the crest). Black solid line results from VS.
νt0 = 0.01.
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Figure 4.5: Time evolution of the pro�les of the rotational velocity at the six locations (from top
L1 to bottom L6) of the gauges of Cox et al. (1995). Blue solid line, experimental results, red solid
line, results from the present model (the roller area is also shown below the crest). Black solid line,
results from VS. Blue dots, experimental results from LDV measurements of velocity.νt0 = 0.01.
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Figure 4.6: Time evolution of the pro�les of the total velocity at the six locations (from top L1
to bottom L6) of the gauges of Cox et al. (1995). Blue solid line, experimental results, red solid
line, results from the present model (the roller area is also shown below the crest). Black solid line,
results from VS. Blue dots, experimental results from LDV measurements of velocity.νt0 = 0.01.

DSIC - Università degli Studi di Roma Tre - Rome, Italy 58



DELOS PROJECT

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0

0.5

1

1.5

2

ζ+
h/

h

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0

0.5

1

1.5

2

ζ+
h/

h

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0

0.5

1

1.5

2

ζ+
h/

h

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.5

1

1.5

2

ζ+
h/

h

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

ζ+
h/

h

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

ζ+
h/

h

t/T

Figure 4.7: Time evolution of the pro�les of the vorticity at the six locations (from top L1 to bottom
L6) of the gauges of Cox et al. (1995). Blue solid line, experimental results, red solid line, results
from the present model (the roller area is also shown below the crest). Black solid line results from
VS. νt0 = 0.03.
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Figure 4.8: Time evolution of the pro�les of the rotational velocity at the six locations (from top
L1 to bottom L6) of the gauges of Cox et al. (1995). Blue solid line, experimental results, red solid
line, results from the present model (the roller area is also shown below the crest). Black solid line,
results from VS. Blue dots, experimental results from LDV measurements of velocity.νt0 = 0.03.
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Figure 4.9: Time evolution of the pro�les of the total velocity at the six locations (from top L1
to bottom L6) of the gauges of Cox et al. (1995). Blue solid line, experimental results, red solid
line, results from the present model (the roller area is also shown below the crest). Black solid line,
results from VS. Blue dots, experimental results from LDV measurements of velocity.νt0 = 0.03.
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4.6 Sensitivity analysis on di�erent pro�lesN(z)

In order to estimate the importance of the eddy viscosity distributionN(z) over the water column,
four possible test pro�les have been chosen. Figure 4.10 shows the shape such pro�lesN0(z) being
the uniform pro�le for which results have already been shown in the previous section. The other three
pro�les are possible parametrization of the turbulence structure all stemming from the observation
that much of the vorticity and turbulence is introduced in the water body by the breaking wave
near the surface. Hence, pro�les N1(z) and N3(z) embody the assumption that turbulent stresses
are non-zero only in the region of the water column directly in�uenced by the wave motion i.e.
approximately the upper half of the normalized water column. This approach seems to be supported
by experimental evidence of turbulence in hydraulic jumps (e.g. Svendsen et al. 2000). Pro�le
N2(z) is the one suggested by Cox et al. (1995). In summaryN0(z) and N2(z) are representative
of turbulent stresses distributed over the whole water column whileN1(z) and N3(z) represent
turbulence localized near the surface. It is obvious that the choice of the pro�les is completely
arbitrary and other possible pro�les can be used. However, sensitivity analysis on these pro�les can
shed light on the structure of the most appropriate one to adequately represent the natural �ow
dynamics.

Figure 4.10: Eddy viscosity pro�les chosen for the numerical simulations. The water column is
normalised through the σ−coordinates transformation of equation (4.3.10).

Figures 4.11, 4.12, 4.13 show the evolution in time of the vorticity and velocity pro�les as
computed by the present model with the four di�erent eddy viscosity pro�les of �gure 4.10 and
with νt0 = 0.03. The largest di�erences induced by the various eddy viscosity distributions can be
found in the pro�les of the vorticity (�gure 4.11). It is clear that the two pro�lesN1(z) and N3(z),
which prescribe a region with zero eddy viscosity, induce rather di�erent vorticity distributions
especially downstream of the wave crest i.e. over the so-called `wake region'. Over the roller region,
which is interested by the beginning of vorticity transport in the �uid, di�erences seem to reduce
due to the fact that vorticity is con�ned in a vertically narrow region over which all pro�les prescribe
approximately the same value of eddy viscosity. Also, the dissipation of vorticity is di�erent, in
particular, the parabolic eddy viscosity pro�le shows a reduced dissipation due to the fact that
vorticity dissipation is locally proportional to the value of the eddy viscosity. In this pro�le the
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Solver L4 L5 L6
Analytical Crest ε ≤ 1 Crest ε ≤ 1 Crest ε ≤ 1

Wake ε ≈ 3 Wake ε ≈ 3.5 Wake ε ≈ 4.5
Numerical N0(z) Crest ε ≤ 1 Crest ε ≤ 2 Crest ε ≤ 2

Wake ε ≈ 0.5 Wake ε ≈ 1 Wake ε ≈ 1
Numerical N1(z) Crest ε ≤ 1 Crest ε ≈ 1 Crest ε ≈ 1

Wake ε ≈ 3 Wake ε ≤ 1 Wake ε ≤ 3
Numerical N2(z) Crest ε ≤ 1 Crest ε ≤ 2 Crest ε ≤ 2

Wake ε ≤ 1 Wake ε ≤ 1 Wake ε ≈ 2
Numerical N3(z) Crest ε ≤ 1 Crest ε ≤ 1 Crest ε ≤ 3.5

Wake ε ≈ 3 Wake ε ≈ 1 Wake ε ≈ 1

Table 4.1: Summary of the quadratic error for four representative solvers over the transition region
(L4) and the inner surf zone (L5, L6).

eddy viscosity value decreases gradually towards zero. This induces higher values of vorticity in the
wake which are more evident at the L5 an L6 locations (inner surf zone).

Analysis of the velocity pro�les reveals that di�erences among the various pro�les of the
rotational velocity are more evident over the `wake regions' than over the the crest area due to the
aforementioned reasons. Hence, at L5 and L6 the velocity away from the crest is well approximated
by the simulations carried out with the parabolic eddy viscosity pro�le. The analysis also shows
that the pro�le N1(z) leads to unreal spiky pro�les of vorticity and velocity and, hence, cannot be
considered as a good candidate for our modeling purposes. For this reason it is not analyzed in
more detail in the following.

In order to quantitatively discuss the di�erences among the various approaches we have decided
to measure the distance between the computed uC

n and the experimental uM
n velocity pro�les (n

gives the discrete vertical level) in terms of the quadratic error:

ε =

∑N
n=n0

(
uC

n − uM
n

)2

∑N
n=n0

(uM
n )2

. (4.6.19)

Note that the lowest level n0 has been taken to coincide with the top of the bottom boundary layer,
while N is the level of the water surface.

We report errors only of four representative cases which are the VS' s solution (�gure 4.14), the
fully numerical solution with N0(z) (�gure 4.15), with N2(z) (�gure 4.16) and with N3(z) (�gure
4.17). Inspection of the �gures reveals that a rather large error characterizes the analytical solution
over the "wake region" for propagation in the transition region (L4) and in the inner surf zone (L5,
L6). On the contrary good performances are achieved by this method in the crest region. The
overall best performances seem to be those of the numerical solution with either uniform (N0(z)) or
linear-uniform eddy viscosity (N2(z)) while a worse comparison characterizes the numerical solution
obtained with the parabolic pro�leN3(z). A synthetic description of the quadratic error is given in
table 4.1.
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Figure 4.11: Time evolution of vorticity pro�les at the six locations from top L1 to bottom L6) of
the gauges of Cox et al. (1995). Red solid line, N0(z) (with water surface and roller area), blue
solid line, N1(z), black solid line, N2(z), magenta solid line, N3(z). Blue dots and blue solid line
wave pro�le, experimental results from Cox et al. (1995).
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Figure 4.12: Time evolution of the pro�les of the rotational velocity at the six locations from top
L1 to bottom L6) of the gauges of Cox et al. (1995). Red solid line, N0(z) (with water surface and
roller area), blue solid line,N1(z), black solid line, N2(z), magenta solid line, N3(z). Blue dots and
blue solid line wave pro�le, experimental results from Coxet al. (1995).
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Figure 4.13: Time evolution of the pro�les of the total velocity at the six locations from top L1 to
bottom L6) of the gauges of Cox et al. (1995). Red solid line, N0(z) (with water surface and roller
area), blue solid line, N1(z), black solid line, N2(z), magenta solid line, N3(z). Blue dots and blue
solid line wave pro�le, experimental results from Coxet al. (1995).
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Figure 4.14: Quadratic error between the experimental and the computed velocity pro�les over a
wave period. The computed pro�le comes from VS's solution. The blue line and the black line
respectively give the experimental water surface from Coxet al. (1995) and the computed one.
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Figure 4.15: Quadratic error between the experimental and the computed velocity pro�les over a
wave period. The computed pro�le comes from the present model withN0(z). The blue line and the
red line respectively give the experimental water surface from Coxet al. (1995) and the computed
one.
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Figure 4.16: Quadratic error between the experimental and the computed velocity pro�les over a
wave period. The computed pro�le comes from the present model withN2(z). The blue line and the
red line respectively give the experimental water surface from Coxet al. (1995) and the computed
one.
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Figure 4.17: Quadratic error between the experimental and the computed velocity pro�les over a
wave period. The computed pro�le comes from the present model withN3(z). The blue line and the
red line respectively give the experimental water surface from Coxet al. (1995) and the computed
one.
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Solver L4 L5 L6
Analytical 0.1033 0.2079 0.0286

Numerical N0(z) 0.0395 0.0198 0.0632
Numerical N1(z) 0.0774 0.0299 0.0408
Numerical N2(z) 0.0427 0.0227 0.0546
Numerical N3(z) 0.0571 0.0820 0.1541

Table 4.2: Summary of the quadratic error for four representative solvers in undertow estimation
over the transition region (L4) and the inner surf zone (L5, L6).

4.7 Undertow pro�les
The `undertow current' plays a key role in the sediment transport processes within the nearshore
region and, consequently, in the morphodynamics of the beach pro�le. Boussinesq-type models, in
general, cannot predict the undertow pro�les, because they do not consider the roller e�ect on the
velocity �eld. The present model, being derived from VS's one, drops the hypothesis of irrotational
�ow and takes in account the roller e�ects. Hence, the undertow current may be evaluated according
to the relation:

uundertow (z) = umean (z)− Q̄

h0 + ζ̄
(4.7.20)

in which the �rst term at the right hand side is the mean horizontal velocity (properly de�ned for
−h0 < z < ζt, h0 being the o�shore water depth and ζt being the surface elevation at the trough
level). The second term represents the correction for the sloshing in the experimental wave tank.
Q̄ is de�ned as:

Q̄ =
1
T

t+T∫

t

ζt∫

−h

udzdt. (4.7.21)

Results the models have been compared with the measurements of CK collected at six sections
over the slope, which coincide with those of Cox et al.. Undertow pro�les estimated with VS's
model and the present one withN0(z) are shown in �gures 4.18 and 4.19 respectively.

The comparison between the two models shows that also for the undertow results are comparable
even if the pro�les at L4 and L5 seem to be better represented by the fully numerical solver. Also
results obtained with N2(z) and N3(z) are shown respectively on �gures 4.20 and 4.21. Quadratic
errors have been summarized in table 4.2 from which it is clear that the overall best performances
have been obtained using the fully numerical solver with theN0(z) and N2(z) pro�les. Even the
pro�le N3(z) performs better than VS's solution especially for data of sectionsL4 and L5. In L6
performances are worse than those of the other models, this is probably due to the di�erences,
already pointed out in the previous sections, in the velocity pro�les and in the estimate of the free
surface.
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Figure 4.18: Undertow pro�les: circles data from CK, solid line results from VS' s model. Panel (a)
section L1, (b) section L2, (c) section L3, (d) section L4, (e) section L5, (f) section L6.
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Figure 4.19: Undertow pro�les: circles data from CK, solid line results fromN0(z) solver. Panel
(a) section L1, (b) section L2, (c) section L3, (d) section L4, (e) section L5, (f) section L6.
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Figure 4.20: Undertow pro�les: circles data from CK, solid line results fromN2(z) solver. Panel
(a) section L1, (b) section L2, (c) section L3, (d) section L4, (e) section L5, (f) section L6.
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Figure 4.21: Undertow pro�les: circles data from CK, solid line results fromN3(z) solver. Panel
(a) section L1, (b) section L2, (c) section L3, (d) section L4, (e) section L5, (f) section L6.
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4.8 Conclusions
Accurate knowledge of the �ow velocity over the entire water column is essential for any analysis
aimed at computing wave loads on and sediment transport in the vicinity of maritime structures.
This is particularly true for low-crested structures.

The Boussinesq-type model of VS for long waves breaking in shallow waters has been extended
to give a more �exible and accurate description of the turbulence due to breaking waves. This has
been achieved by allowing the eddy viscosity, used to represent turbulent stresses, to vary along the
water column.

A vertically-varying eddy viscosity, in turn, requires a fully numerical solution of the VTE to
be coupled with the Boussinesq solver. Hence, a numerical solver based on the ABM predictor-
corrector scheme has been implemented to solve the VTE. This scheme has been chosen as it allows
for an adequate accuracy and for an optimal interlacing with the Boussinesq-type solver (the data-
structure is basically the same). In order to improve the computational e�ciency a �mode splitting�
technique has been used such that a number of time steps of the VTE integration model (internal
module) are carried out for each time step of the Boussinesq model (external module).

The �ow solutions of the fully numerical solver with uniform eddy viscosity pro�le have been
compared both with the semi-analytical VS's solution and with experimental data. The data sets
used for the comparison are those of Hansen and Svendsen (1979) and of Cox et al. (1995). Analysis
of the results reveals that the fully numerical solver injects in the �ow less vorticity than that
predicted by VS's solution. Moreover, the vorticity seems to remain more con�ned in the upper half
of the water column, never reaching the bottom as predicted by VS's solution. As a consequence of
the reduced energy decay we �nd that within the inner surf zone wave crests are less rounded and
the wave height decay is weaker. On the other hand, the pro�les of the velocity (both rotational
and total) seem to be qualitatively well predicted especially away from the wave crests the major
dicrepancy being caused by a shift, also characterizing the VS solution, in the velocity pro�le with
respect to the experimental data. We believe this shift is mainly due to an incorrect prediction of
the bottom boundary condition i.e. of the �ow velocity at the top of the bottom boundary layer.

We pushed forward our analysis to gain some knowledge on the most suitable pro�les of eddy
viscosity to be used for modelling. Hence, a sensitivity analisys has been carried out aimed at
comparing four possible pro�les. Rather surprisingly we found that the pro�les which lead to the
best overall comparison between experimental and computed velocity pro�les are given either by a
uniform or by a linear-uniform eddy viscosity over the whole water column. Although these results
are in line with the analysis of Cox et al. (1995) there is a contradictory experimental evidence (see
Svendsen et al. 2000) for which turbulence should be better represented by a non-vanishing eddy
viscosity only over the top half of the water column. Analysis is underway to evaluate such di�erent
behavior as depending on the di�erent �ow conditions (i.e. hydraulic jump vs. propagating bores).
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Chapter 5

Conclusions

In this report the range of validity of solutions provided by depth-integrated numerical models for
studying the nearshore hydrodynamics has been extended to cover swash zone motions and improve
the description of surf zone �ows. Three innovative results were achieved. These are here below
summarized.

• The applicability of BTE in the swash zone and the role of dispersive and dispersive-nonlinear
terms was studied (section 2.3).

• A new SBC for BTE was derived and veri�ed against well-known analytical solution (chapter
3).

• A new technique for simulating wave-breaking into BTE models was proposed and veri�ed
against available experimental data (chapter 4).

As far as the BTE are concerned, we have shown that if not properly handled, dispersive and
dispersive-nonlinear terms of these equations, can unrealistically grow in the swash zone. A modi�ed
form of the BTE, written in terms of the total water depth and not in terms of the undisturbed
water depth was therefore introduced. According to this new form of the equations, dispersive terms
naturally tend to vanish at the shoreline, where the water depth tends to zero.

A new technique for specifying SBC and tracking the movements of the instantaneous shoreline
was subsequently derived for numerical models based on the BTE. This technique is based on the use
of a speci�c shock-capturing method for dealing with the discontinuity occurring at the shoreline,
where a transition between wet and dry conditions occur. A numerical model based on the scheme
proposed by Wei and Kirby (1995) was coded in order to implement and verify the new SBC. The
comparison of the numerical model results against well-known analytical solutions suggested that
using the new SBC can lead to very accurate and physically-based simulations of swash zone �ows.

A novel procedure for solving the coupled set of BTE+VTE has been implemented which
allows to extend the method of VS to the case of vertically-nonuniform eddy viscosities. This
is a fundamental step towards the choice and implementation of the pro�les which most suitable
represent the vertical turbulence structure caused by a spilling breaker either far or close to a
submerged structure. Preliminary results carried out over uniformly sloping beaches show that the
most suitable pro�les are either the uniform pro�le (hence conforming the validity of VS analysis)
or the linear-uniform pro�le of eddy viscosity. Analysis is still ongoing which aims at: (1) improving
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the computation of the �ow velocity just outside the bottom boundary layer, (2) verifying what
the turbulence structure is in the vicinity of sudden topographic changes, (3) calibrating the model
once the most suitable pro�le of eddy viscosity is de�nitevely chosen.

It is clear that the above improvements, which deeply in�uence the computation of sediment
transport in the vicinity of low-crested structures, are fully in line with the aims of UR3 contributions
to DELOS Project.
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